
Krowd: A Key-Value Store for Crowded Venues

Utsav Drolia, Nathan Mickulicz, Rajeev Gandhi, Priya Narasimhan
Dept. of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, USA

{udrolia,nmickuli}@andrew.cmu.edu, {rgandhi,priyan}@ece.cmu.edu

ABSTRACT
Attendees of live events want to capture and share rich con-
tent using their mobile devices, during the events. However,
the infrastructure at venues that host live events provide
poor, low-bandwidth connectivity. Instead of relying on in-
frastructure provided by the venue, we propose to stand up a
temporary “infrastructure” using the very devices that need
it, to enable content-sharing with nearby devices. To this
end, we developed Krowd, a novel system that provides a
key-value store abstraction to applications that share con-
tent among local, nearby users. We evaluated Krowd using
over 200 hours of real-world traces from sold-out NBA and
NHL playoffs and show that it is 50% faster and consumes
50% less bandwidth than alternative systems. We believe
that Krowd is the only decentralized and distributed system
to provide a key-value store made for neighboring mobile
devices and of neighboring mobile devices.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Distributed
Systems; H.3 [Information Storage And Retrieval]: Mis-
cellaneous

Keywords
cooperative; mobile; key-value; crowd; localized

1. INTRODUCTION
It’s common to hear of tens of thousands of users at live
events (concerts, games, commencement) producing and con-
suming significant and increasing quantities of data using
their mobile devices. Simultaneously, the number of mobile
devices at these live events is also growing. As captured
in Figure 1, there is a trend for an ever-increasing number
of users at live events to expect high-bandwidth connectiv-
ity and the ability to share content via their mobile devices.
Let’s look at data from the NFL Super Bowl, an annual
high-profile event:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MobiArch’15, September 7, 2015, Paris, France.
c© 2015 ACM. ISBN 978-1-4503-3695-6/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2795381.2795388.

0	  

2000	  

4000	  

6000	  

8000	  

10000	  

12000	  

14000	  

2011	   2012	   2013	   2014	   2015	  
Da

ta
	  u
sa
ge
	  (G

Bs
)	  

Year	  

Data	  usage	  at	  the	  Super	  Bowl	  

Wi-‐Fi	  

T-‐Mobile	  

Sprint	  

Verizon	  

AT&T	  

Figure 1: Increasing in-stadium Wi-Fi and cellular data us-
age over mobile devices at the NFL Super Bowl.

• At the 2015 Super Bowl [4], over 6.23TB of data was
transferred over the in-stadium Wi-Fi network, with
social networks consuming 10% of all bandwidth.

• At the 2015 Super Bowl [3], Verizon reported 4.11 TB
of cellular data transferred, including 122,000 videos,
while AT&T logged 1.7TB. Sprint’s cellular network
transferred over 750GB of data with 25% for social
networks, 15% for sharing content, and 5% for stream-
ing videos.

• At the 2014 Super Bowl, over 5 photos/sec were up-
loaded inside the stadium via a single image-sharing
application, over 90,000 photos in all.

• The number of in-stadium devices has skyrocketed,
from 8000 at Super Bowl 2012 to 68,500 at Super Bowl
2014 [12].

Another trend is the increased focus on improving the at-
tendees’ in-venue experience. For example, stadiums and
sports teams now provide multiple live camera angles and
on-demand replays viewable on fans’ smartphones [2]. In-
deed, by extension, one could think of every attendee’s per-
spective as a unique“camera angle,”with the associated con-
tent (of, say, a replay captured by a fan’s smartphone cam-
era) being of value to other attendees in the venue. Hence,
there can be a lot of content created in the venue, of value
to other people inside the venue, and this trend is likely to
increase.

The challenges in supporting this trend lie with the cur-
rent infrastructure. For example, only 35% of major stadi-
ums have in-venue Wi-Fi networks [7], provisioned largely

20



for coverage, not capacity, which means that, while every
seat is covered, the networks cannot handle a large den-
sity of attendees. Hence, at most venues, attendees will not
be able to share content at their desired rates or on their
desired channels. Installing or upgrading in-venue wireless
networks can be cost-prohibitive, e.g., it would cost some or-
ganizations “$2 million each to improve stadium cell phone
and Wi-Fi connectivity.” [12] Clearly, in-venue wireless in-
frastructure, in its current form, will not be sufficient to
handle the (content and user) demands that will likely be
placed on it.

However, what if more attendees at a live event actually
meant better infrastructure? What if instead of straining
the venue-provided infrastructure, each device augmented
it? Could we stand up a temporary infrastructure built on
the very devices that need it? Could we provide attendees
with the capability to share their in-venue-generated content
with other attendees, without relying on the venue-provided
infrastructure?

To enable this we present Krowd, a temporary “infras-
tructure” supported by the attendees’ devices themselves.
We propose to use the devices’ computation, communica-
tion and storage capabilities to power this “infrastructure”.
These devices have communication capabilities which allow
them to talk to other nearby devices without going over the
Internet, e.g. through access points (AP). Krowd leverages
this and handles the communication and coordination be-
tween nearby mobile devices to provide an easy-to-use key-
value store abstraction for applications.This paper highlights
how it can be used for content distribution. Krowd is made
for neighboring mobile devices and of neighboring mobile
devices. In this paper, we evaluate Krowd using multiple
real-world traces from attendees at popular NHL and NBA
games and show that it lowers the latency and bandwidth
consumption by approximately 50% as compared to alter-
native systems.
Contributions. This paper makes three contributions:

• A key-based addressing technique for clusters of neigh-
boring mobile devices.

• A key-value store abstraction using the addressing tech-
nique to enable coordinated content sharing.

• Insights from experiments based on over 200 hours of
real device-activity traces from NHL and NBA games.

The next section sheds light on the requirements and de-
sign of Krowd. The components of Krowd are described in
Section 4 and it is evaluated in Section 5 through traces
obtained from popular sporting events. Section 6 gives an
overview of the related work. We conclude in Section 8.

2. PROBLEM STATEMENT
The primary focus of Krowd is to enable mobile-device

users to easily share content with and retrieve content from
other neighboring mobile-device users in a resource-efficient
manner.

2.1 Requirements
A content sharing service for mobile devices has the fol-

lowing high-level requirements:
Descriptive Data. The system should allow user applica-
tions to search based on meta-data, e.g. tags.

Efficiency. Given that these devices are mobile and battery-
powered, efficient use of resources is necessary.
Responsiveness. Since these services are user-facing, they
need to have low end-to-end latency.

3. DESIGN OVERVIEW
The basic goal of Krowd is to provide a distributed key-

value store for content sharing, discovery and retrieval. We
do this through the use of network-based discovery to find
nearby devices and consistent hashing to guide the share-
content and retrieve-content requests made on the key-store
to the correct nearby device. The rest of the section de-
scribes the design choices made for Krowd to meet the re-
quirements mentioned in Section 2.1.

Guiding principles for the overall design were decentral-
ization, to avoid any one device becoming “more equal” than
other devices, and autonomy, since there can be no system
administrators for such a system.

To enable storing and searching data based on attributes,
Krowd provides a key-value store abstraction for the appli-
cation. The application can use attributes of the content
as keys and the URI (Universal Resource Identifier) of the
content as the value when storing and retrieving from the
key-value store. If other users also store values with the
same key, these values get appended into lists. When fetch-
ing, the application would need to provide an attribute for
the content it is looking for and would receive the consoli-
dated list of content URIs. Note, the key-value store only
stores meta-data, not the actual content.

We made multiple design choices to ensure efficiency in
Krowd. To keep the workload equal amongst participating
devices, the key-value store needs to be distributed and de-
centralized. A consistent hashing scheme is used to partition
and distribute the keys of the key-value store. This ensures
each device is responsible for a unique subset of the keys and
no single device is overloaded. The hashing scheme used by
Krowd is rendezvous hashing, also known as highest ran-
dom weight hashing [13]. This hashing scheme, along with
network device discovery, ensures that Krowd is decentral-
ized yet coordinated, and the workload is distributed. Since
the devices use wireless communications, which is energy-
intensive, minimizing communication is essential for energy
efficiency. The use of rendezvous hashing helps achieve this
requirement and we delve into this further in Section 4.

By using rendezvous hashing, Krowd also ensures low end-
to-end latency. All lookups in this scheme are resolved in
one hop, hence key retrieval is fast. As there is no single
“master” device, lookups and stores are spread across all
devices and no node becomes a bottleneck.

Krowd chooses to not handle churn implicitly. This is be-
cause handling churn implicitly, i.e. without knowing the
application’s intent, consumes bandwidth, e.g. DHTs han-
dle churn implicitly by replicating data. Moreover, most of
the attendees at an event largely stay in their places during
the event. If the application needs to tolerate churn, it can
simply re-issue its key-value pairs periodically.

3.1 Background: Distributed Hash Tables
Distributed hash tables (DHTs) [10, 9] are a class of struc-

tured peer-to-peer systems. They use key-based routing and
consistent hashing to provide a lookup service similar to a
hash table, but where the (key, value) pairs are distributed
across participating nodes. They were designed to function

21



on peers (desktops) distributed across the Internet, for coop-
erative Web caching, distributed file systems, domain name
services, instant messaging, multicast, and also peer-to-peer
file sharing. On the surface, Krowd and DHTs look simi-
lar and in fact, Krowd draws inspiration from DHTs. Both
provide a key-value based lookup service, route based on
keys, use some form of hashing, and distribute the workload
across all participating nodes. The key design choices were
made for DHTs to work across the wired Internet. How-
ever, the goal for Krowd is to work across a local, wireless
network, and this is the key difference. Section 5 compares
Krowd with Kademlia and provides key insights that help
understand why DHTs are not suitable for local, wireless
networks.

3.2 Assumptions
Single-hop communication. Krowd relies upon 1-hop
ad-hoc networks provided by wireless access points or Wi-Fi
Direct.
Broadcast support. We assume that the communication
technology, i.e. access points, Wi-Fi Direct etc. supports
the broadcast channel and mobile devices are allowed to use
it.
Session ID. Krowd assumes that for a given session, i.e.
the duration of the event, the IP address of a device does
not change. In the future, this can be easily overcome by
using universal IDs instead of IP addresses to identify the
devices.

4. Krowd’S APPROACH
As can be seen in Figure 2, the system is divided into three

main components: Discovery and Communication, KRoute,
and KVStore; the application on top interacts only with
KVStore. An instance of Krowd and the application runs
on each participating device in the group. For this imple-
mentation we consider every mobile device connected to the
same access point as part of the group (the number of nodes
connected to an access point varies from 20 to 50, depend-
ing on the manufacturer), as seen in Figure 2. This paper
focuses on the creation and management of a single group.
Discovery and Communications. This module is re-
sponsible for announcing a device’s presence, discovering
other devices in the vicinity, and communicating with them.
To alert other devices about its presence, this module sends
UDP beacons to the access point’s broadcast address once
every five seconds. This beacon also contains the network
endpoint that the device is listening on. On receiving a
beacon, this module opens a connection with the beacon’s
source. Since these beacons are periodic, they are used for
detecting device departures as well. If a beacon (or any other
data) is not received from a discovered device for T seconds,
where T is configurable, this module tries to ping the device.
If this is unsuccessful, the device is considered to have left
the vicinity. Therefore at steady state each device has a list
of all other devices in the group, i.e. connected to the same
access point. It might seem like this discovery scheme uses a
large share of precious bandwidth. However, by keeping the
beacons small (13 bytes on average) and using the broad-
cast mechanism, the bandwidth consumed is approximately
255 bytes/s per device, for a group of 20 devices and T=5s,
which amounts to less than 0.01% of a nominal 54MB/s Wi-
Fi network. By using this discovery mechanism and track-
ing devices’ presence, this module provides a set of nearby

devices and an interface to communicate with them. It pre-
serves symmetry and avoids having a centralized registry for
storing membership and device presence information.
KRoute: Partitioning and routing. This is the key-
based routing module. Given a key and data, it sends the
data to the correct device responsible for that key. It uses
highest random weight hashing [13] to accomplish this. Given
a key and a list of known servers, this scheme consistently
maps the key to a unique server from the known servers.
In [13], this scheme was used by clients trying to access re-
sources over the Internet. If all the clients had the same
list of servers, they would all always fetch a resource at a
given URL from the same server. Consequently, KRoute
uses the set of available nearby devices provided by the dis-
covery module, and consistently maps a key to a device.
Given that the discovery layer on each device discovers ev-
ery other device in the group, this hashing scheme is consis-
tent and KRoute will always map a key to the same device.
KRoute presents itself to other components as a high-level
communication layer, where instead of requiring endpoints
to communicate with, it requires keys. Hence, if two differ-
ent devices provide the same key to their respective KRoute
modules, they end up communicating with the same device.
This is essential for efficient coordination. It obviates the
need for any dynamic agreement protocol when multiple de-
vices want to talk to the same device. Neither does it need
multiple hops to find the correct device. This was key be-
cause multiple hops would cause congestion in a local dense
wireless network.
KVStore: Key-value interface. Armed with the key-
based communication provided by KRoute, this module builds
a thin remote procedure call (RPC) layer on top of it. It
also contains the device-local hash table for storage of keys
and values. The RPC layer implements the two procedures
required for a key-value store, namely put(key, value) and
get(key). When the application stores a key-value pair, KV-
Store creates and serializes a put RPC object and sends
it using KRoute by providing the key from the key-value
pair. On receiving a remote put call, KVStore extracts the
key-value pair from the serialized RPC and stores it in its
local hash table. When the application requests a key, KV-
Store provides the get RPC object and the requested key to
KRoute, which sends it to the correct remote device. On
the remote device, when KVStore receives the RPC, it ex-
tracts the key, checks its local hash table and replies with
the associated value. By providing a simple key-value inter-
face, KVStore makes Krowd easy to use for applications, and
specifically makes sharing and searching content through de-
scriptive tags easy.
Sharing content using Krowd. Lets look at an example
scenario to see how an application would use Krowd to en-
able content-sharing. Suppose user A wants to share a video
taken during a game and tags it with “dunk”. The applica-
tion calls the put(“dunk”, URI) method in KVStore, where
URI is the URI of the video. KVStore creates a RPC ob-
ject and submits it to KRoute, providing “dunk” as the key.
KRoute then maps this key to a device in the vicinity, e.g.
device X, and sends the RPC object to it. On device X, the
respective key and value is stored. Now if another nearby
user B searches for content tagged as“dunk”, the application
calls the get(“dunk”) method of KVStore, which submits the
respective RPC object to KRoute with the key as “dunk”.
KRoute again maps this key to device X and sends the RPC

22



Figure 2: Fans with devices in a Wi-Fi enabled section of a stadium. Each device runs the Krowd architecture

object to it. On device X, the URI associated with this key
is sent back to user B’s device. The application then uses
the URI to contact user A’s device and get the requested
video.

Thus, by using device discovery along with key-based com-
munication, Krowd enables decentralized yet efficient coor-
dination and the RPC layer provides an easy-to-use key-
value store for content sharing and discovery.

5. EVALUATION
Goal. The goal of the experiments was to evaluate and
compare how Krowd and Kademlia [9], a popular DHT,
function in groups of wireless mobile devices. The met-
rics for comparison were end-to-end latency for getting the
value of a specified key and the overall bandwidth used,
i.e. inclusive of actual fetching/storing and maintenance.
End-to-end latency measures the responsiveness of the sys-
tem, while bandwidth consumption measures efficiency, e.g.
higher bandwidth consumption would lead to faster dis-
charge of batteries in mobile devices.
Real-world Traces. Krowd is meant for scenarios when
users come together at popular places and events. To sim-
ulate such a scenario, evaluation was done based on real-
world traces collected from attendees’ mobile devices at pop-
ular, sold-out NHL and NBA games. The traces contain
sequences of timestamped logs of all attendees’ requests to
view content on their devices during the entire live event.
Each request log contains the time of request, user ID and
content requested. We use these traces to represent how at-
tendees would use their devices to share and view content
at live events. Each request made by a user in the trace is
treated as a request to retrieve content from nearby devices,
and hence as a get request on the key-value store. For the
experiments, the request logs for each unique user ID was
replayed by a unique device according to the timestamps.
We used traces from over 50 games to evaluate Krowd.

5.1 Experiments
Setup. Our experiments were setup to emulate a section
of an NHL stadium where the section seats 20 attendees in
it. Such a section is generally served by one access point in
a configuration similar to the one shown in Figure 2. Each
user’s mobile device was emulated by a virtual machine con-
figured with 1 CPU and 2GB RAM. These 20 virtual mobile

devices were connected to a simulated access point, over a
simulated wireless-medium, using NS3 [5] to reconstruct the
scenario shown in Figure 2.
Procedure. To use our real-world traces in this setup, some
filtering was performed. For each trace, 20 of the most active
users were selected and their logs were partitioned to form
20 separate user-traces, each containing the logs of a unique
user. Each of these user-traces was assigned to a different
virtual mobile device. During the experiment, the requests
made by a virtual mobile device was in accordance with its
assigned user-trace. The procedure followed by each device
for each experiment:
1. Discover all devices and stabilize
2. Store keys from the user-trace in key-value store
3. Issue get requests as per its user-trace

Note, the metrics are measured during the get-requests
phase only since put requests are asynchronous and do not
contribute to user-perceived latencies. Also, only the value
of the key is fetched from the key-value store, i.e. the URI
of the content, not the content itself because fetching the
content will cause the same bandwidth consumption and
latency on both systems.

5.2 Modifying Kademlia
Bootstrapping. Kademlia, and any DHT in general, starts
up using at least one “well-known” node which every new
node contacts to join the DHT. Having such a node is infea-
sible in the scenarios that Krowd is meant for. Hence, the
same discovery layer as Krowd is used in Kademlia for the
experiments. The discovered nodes are treated as neighbour
nodes and the normal Kademlia protocol for joining takes
over.
Bucket size. Kademlia has a tunable parameter, k, which
controls the size of each bucket. A bucket is a list of neigh-
boring nodes at an equal “distance” from the given node.
Each node contains multiple buckets, each for a fixed dis-
tance from this node1. To make a fair comparison we set
k to 20. This way every node in the network knows every
other node in the network and hence effectively it would not
need multiple hops to reach a specific node.

1For further details about the distance metric and how it is
established, please see [9]

23



(a) Bandwidth consumption

(b) End-to-end latency

Figure 3: Comparing Krowd and Kademlia.

5.3 Insights
The results seen in Figure 3 are from the trace of the game

that saw the most requests among all games. Results from
other traces are similar and are omitted for brevity.
Bandwidth Consumption. In Figure 3a we see that for
each node, Krowd consumes lesser bandwidth than Kadem-
lia. The bandwidth measured is the overall bandwidth, i.e.
including bandwidth consumed for maintenance during the
experiment. Kademlia does parallel lookups when process-
ing a get request as explained in [9]. It was designed to
do so to accelerate finding the correct node which held the
requested key. This leads to a higher bandwidth consump-
tion. Moreover, to accelerate future lookups for a key, when
a node completes a get request successfully, it stores the
key-value pair on a known neighbor closest to the key. This
further increases bandwidth consumption. The multi-hop
nature of DHTs would contribute to higher bandwidth con-
sumption as well, but as mentioned above, Kademlia is con-
figured to always resolve a lookup in a single hop. On the
other hand, Krowd was designed for a local, wireless net-
work, and to resolve each lookup in a single-hop. Hence it
does not need to parallelize lookups nor accelerate them any
further.
Latency. In Figure 3b we see that for each node, Krowd has
lower end-to-end latency than Kademlia. The latency is
measured as the time taken starting from issuing a get re-
quest to when a value is returned to the application. The

graph shows average latency per request. Note, Krowd not
only is much faster but is also consistent across all nodes, ap-
proximately taking the same time per request on each node,
compared to Kademlia. This is because of multiple reasons.
Firstly, as mentioned before, Kademlia employs heuristics
for accelerating lookups such as parallel lookups and stor-
ing fetched key-values in nearby nodes for faster subsequent
lookups. On a local, wireless medium these heuristics cause
harm - every additional lookup or store blocks other re-
quests/lookups. A second reason is the periodic pings used
by Kademlia for liveness. This again causes interference with
other operations on the wireless medium. Krowd, instead,
cleverly uses the broadcast property of the wireless medium.
Moreover, this mechanism has the by-product of being used
as a presence protocol as well. Krowd does not need to ping
each node separately to check if it is still available.

DHTs were designed for the Internet and wide-area wired
networks and a number of heuristics were used to lower la-
tency of requests across the Internet. However in a local,
wireless network, these heuristics are ineffective and in fact
degrade performance.

Since Krowd is designed specifically for a local, wireless
network from the ground up, we make sure there is no du-
plication of effort. Krowd uses the network’s properties and
is thus faster and more efficient than systems designed for
the Internet and wired networks.

6. RELATED WORK

6.1 Mobile content dissemination and search
[8] presents a system for locating content in the vicinity

based on attributes, similar to Krowd. However, in this
work, each device broadcasts its query tags/attributes to all
devices in the vicinity. There is no coordination and hence
every query, from every device, needs to be sent to every
other device in the vicinity.

[14] proposes MobiTribe - a system for disseminating con-
tent, generated on mobile devices, across the Internet. It
requires a central server for content discovery, peer regis-
tration and meta-data management. Krowd is completely
decentralized and targets groups of nearby devices.

[11, 6] present systems for content search in mobile de-
vices. Both consider registered smartphones as distributed
databases and allow a third party to compose queries on a
central server and push them onto these smartphones to find
out photos that match the query. We would like to enable
similar content-based search on Krowd but without the need
of a central server.

6.2 DHTs on mobile ad-hoc networks
There has been considerable work on using DHTs on mo-

bile, ad-hoc networks as surveyed in [1]. Such systems try
to use DHT routing protocols at the network level. This is
entirely different from Krowd, which builds on top of a one
hop network, uses key-based routing for coordination and
provides a key-value store abstraction to applications.

7. FUTURE WORK
One of the first next steps will be accommodating churn,

i.e. users joining and departing while the application is ac-
tive. Although this can be done easily at the application
level by republishing its keys periodically, we would like to
design a more efficient solution.

24



This paper highlights how Krowd can be used for proximal
content-sharing. However, Krowd can be used for multiple
other applications as well. Any application that requires
efficient decentralized cooperation among proximal mobile
devices can make use of Krowd. For example, we envision
it being used for topic-based localized chat-rooms.

By allowing coordination and cooperation among neigh-
boring mobile devices, Krowd takes a step towards building
“edge-clouds” of mobile devices. To further scale-up, we are
looking into how to connect individual groups formed by
Krowd by exploiting the fact that access-points at venues
may be interconnected to form a venue-specific intra-network.

We are building a prototype compatible with smartphones
and will soon test it in real venues such as stadiums and
arenas.

8. CONCLUSION
Numerous attendees want to share content that they cre-

ate while attending the event. Venues have tried enable
this by adding infrastructure for high-bandwidth connectiv-
ity. However, the demand for connectivity and bandwidth,
and the increase in density of devices will likely overwhelm
venue-provided infrastructure. Instead, we proposed Krowd,
a system that uses all the nearby devices’ computation, com-
munication and storage capabilities to provide an easy-to-
use, yet powerful key-value store abstraction for applications
that share content with other nearby devices. The novel
key-based communication mechanism coupled with network
service discovery show how Krowd is designed for local, wire-
less networks and the RPC layer around these provides an
easy-to-use interface. We evaluated the system using over
200 hours of real-world traces obtained from attendees’ de-
vices at NHL and NBA games to show the efficacy of these
design choices. We believe that Krowd is a step in the right
direction to build coordinated wireless clouds of neighboring
mobile-devices.

9. REFERENCES
[1] Abid, S. A., Othman, M., and Shah, N. A survey

on dht-based routing for large-scale mobile ad hoc
networks. ACM Computing Surveys (CSUR) (2014).

[2] Cisco. Connecting Fans in New Ways to Deliver the
Ultimate Fan Experience.

[3] Dano, M. Super Bowl traffic stats.
http://goo.gl/uzMD2B.

[4] Extreme Marketing Team. In-Stadium Wi-Fi
Analytics Reveal Fan Engagement At Super Bowl
XLIX. http://goo.gl/piMmtQ.

[5] Henderson, Thomas R et al. Network simulations
with the ns-3 simulator. SIGCOMM demonstration
(2008).

[6] Jiang et al. Mediascope: selective on-demand media
retrieval from mobile devices. In ACM International
Conference on Information Processing in Sensor
Networks (2013).

[7] Kapustka, P., and Stoffel, C. State of the
Stadium Technology Survey. Tech. rep., 2014.

[8] Kooh, T. G. C., Lv, Q., and Mishra, S. Attribute
based content sharing in mobile adhoc networks of
smartphones over wifi. In Computer Communications
and Networks, IEEE International Conference on
(2012).

[9] Maymounkov, P., and Mazieres, D. Kademlia: A
peer-to-peer information system based on the xor
metric. In Peer-to-Peer Systems. Springer, 2002.

[10] Rowstron, A., and Druschel, P. Pastry: Scalable,
decentralized object location, and routing for
large-scale peer-to-peer systems. In Middleware
(2001).

[11] Sani et al. Opportunistic content search of
smartphone photos. arXiv preprint arXiv:1106.5568
(2011).

[12] Steinbach, P. Wi-Fi Service Increasingly Seen As a
Must-Have Stadium Amenity. http://goo.gl/LCGCDv,
July 2013.

[13] Thaler, D. G., and Ravishankar, C. V. Using
name-based mappings to increase hit rates.
IEEE/ACM Transactions on Networking (1998).

[14] Thilakarathna, K., Petander, H., and
Seneviratne, A. Performance of content replication
in mobitribe: A distributed architecture for mobile
ugc sharing. In Local Computer Networks, IEEE
Conference on (2011).

25




