
Queueing Syst
DOI 10.1007/s11134-014-9409-7

Exact analysis of the M/M/k/setup class of Markov
chains via recursive renewal reward

Anshul Gandhi · Sherwin Doroudi ·
Mor Harchol-Balter · Alan Scheller-Wolf

Received: 13 May 2013 / Revised: 20 March 2014
© Springer Science+Business Media New York 2014

Abstract The M/M/k/setup model, where there is a penalty for turning servers on, is
common in data centers, call centers, and manufacturing systems. Setup costs take the
form of a time delay, and sometimes there is additionally a power penalty, as in the
case of data centers. While the M/M/1/setup was exactly analyzed in 1964, no exact
analysis exists to date for the M/M/k/setup with k > 1. In this paper, we provide the
first exact, closed-form analysis for the M/M/k/setup and some of its important vari-
ants including systems in which idle servers delay for a period of time before turning
off or can be put to sleep. Our analysis is made possible by a new way of combining
renewal reward theory and recursive techniques to solve Markov chains with a repeat-
ing structure. Our renewal-based approach uses ideas from renewal reward theory and
busy period analysis to obtain closed-form expressions for metrics of interest such as
the transform of time in system and the transform of power consumed by the system.
The simplicity, intuitiveness, and versatility of our renewal-based approach makes
it useful for analyzing Markov chains far beyond the M/M/k/setup. In general, our
renewal-based approach should be used to reduce the analysis of any 2-dimensional
Markov chain which is infinite in at most one dimension and repeating to the prob-
lem of solving a system of polynomial equations. In the case where all transitions in

A. Gandhi (B) ·M. Harchol-Balter
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: anshulg@cs.cmu.edu

M. Harchol-Balter
e-mail: harchol@cs.cmu.edu

S. Doroudi · A. Scheller-Wolf
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: sdoroudi@andrew.cmu.edu

A. Scheller-Wolf
e-mail: awolf@andrew.cmu.edu

123

Author's personal copy

Queueing Syst

the repeating portion of the Markov chain are skip-free and all up/down arrows are
unidirectional, the resulting system of equations will yield a closed-form solution.

Keywords Queueing theory · Performance · Resource allocation · Renewal reward ·
Repeating chains

Mathematics Subject Classification 60K25 · 68M20 · 60J25

1 Introduction

Setup times (a.k.a. exceptional first service) are a fundamental component of com-
puter systems and manufacturing systems, and therefore, they have always played an
important role in queueing theoretic analysis. In manufacturing systems, it is very
common for a job that finds a server idle to wait for the server to “warm up” before
service is initiated. In retail and hospitals, the arrival of customers may necessitate
bringing in an additional human server, which requires a setup time for the server to
arrive. In computer systems, setup times are once again at the forefront of research,
as they are the key issue in dynamic capacity provisioning for data centers.
In data centers, it is desirable to turn idle servers off, or reallocate the servers, to

save power. This is because idle servers burn power at 60–70% of the peak rate, and so
leaving servers on when idle is wasteful [4]. Unfortunately, most companies are hesi-
tant to turn off idle servers because the setup time needed to restart these servers is very
costly; the typical setup times for servers is 200 s, while a job’s service requirement is
typically less than 1 s [6,16]. Not only is the setup time prohibitive, but power is also
burned at peak rate during the entire setup period, although the server is still not func-
tional. Thus, it is not at all obviously true that turning off idle servers is advantageous.
Many ideas have been proposed to minimize the number of times that servers in a

data center must undergo setup. One major line of research involves load prediction
techniques [5,12,16,21]. In the case where load is unpredictable, research has turned
to looking at policies such as delayedoff, which delays turning off an idle server for
some fixed amount of time, in anticipation of a new arrival [9,11,14]. Another line of
research involves reducing setup times by developing low-power sleepmodes [11,19].
Surprisingly, despite all the importance associated with the setup times, very little

is known about their analysis. The M/G/1 with setup times was analyzed in 1964
by Welch [26]. The analysis of an M/M/k system with setup times, which we refer
to as M/M/k/setup, however, has remained elusive, owing largely to the complexity
of the underlying Markov chain. (Fig. 1 shows an M/M/k/setup with exponentially
distributed setup times.) In 2010, various analytic approximations for the M/M/k/set-
up were proposed in [10]. These approximations work well provided that either load
is low or the setup time is low. The M/M/∞/setup was also analyzed in [10] and
found to exhibit product form. Other than the above, no progress has been made
on the M/M/k/setup. Even less is known about the M/M/k/setup/delayedoff, where
idle servers delay for a finite amount of time before turning off, or the M/M/k/set-
up/sleep, where idle servers can either be turned off (high setup time, zero power)
or put to sleep (lower setup time, low power). Section 3 describes these models in

123

Author's personal copy

Queueing Syst

Fig. 1 M/M/k/setup Markov chain. Each state is denoted by the pair (i, j), where i is the number of on
servers, and j is the number of jobs in the system. The number of servers in setup is min{ j − i, k − i}

greater detail. Section 2 describes related prior research, including existing methods
for solving general Markov chains with a repeating structure.
This paper is the first to derive an exact, closed-form solution for the M/M/k/set-

up, the M/M/k/setup/delayedoff, and the M/M/k/setup/sleep. We obtain the Laplace
transformof response time, the z-transformof power consumption, andother important
metrics for all of the above models.
Our solution is made possible by a new way of combining renewal reward theory

and recursive techniques for solving Markov chains with a repeating structure. Our
renewal-based approach uses ideas from renewal reward theory to obtain the metrics
of interest, while utilizing certain recursion lemmas about the chain. Given that we
leverage recursions and the repeating structure of the Markov chain, our approach can
be considered similar in spirit to matrix-analytic methods. However, unlike matrix-
analyticmethods [17], our approach does not require finding the “rate”matrix.Another
strength of our approach is that it is very intuitive and is simple enough to be taught
in an elementary stochastic processes course. Thus, our technique provides a new
and powerful framework for solving Markov chains that are typically analyzed via
matrix-analytic methods.
In general, our renewal-based approach should be able to reduce the analysis of any

2-dimensional Markov chain which is finite in one dimension, say the vertical dimen-
sion, and infinite (with repeating structure) in the other (horizontal dimension) to the
problem of solving a system of polynomial equations. Further, if in the repeating por-
tion all horizontal transitions are skip-free and all vertical transitions are unidirectional,
the resulting systemof equationswill be atmost quadratic, yielding a closed-form solu-
tion (see Sect. 10 andFig. 6 formore details).We thus anticipate that our renewal-based
approach will prove useful to other researchers in analyzing many new problems.

123

personal copy

Queueing Syst

2 Prior work

The few papers that have looked at the M/M/k/setup are discussed in Sect. 1. For the
M/M/k/setup/delayedoff, only iterativematrix-analytic approaches have been used [9].
No analysis exists forM/M/k/setup/sleep.We now discuss papers that have considered
repeating Markov chains and have proposed techniques for solving these. We then
comment on how these techniques might or might not apply to the M/M/k/setup.

2.1 Matrix-analytic-based approaches

Matrix-analytic methods are a common approach for analyzing Markov chains with
repeating structure. Such approaches are typically numerical, generally involving iter-
ation to find the rate matrix, R. These approaches do not, in general, lead to closed
forms or to any intuition, but are very useful for evaluating chains under different
parameters.
There are caseswhere it is known that the Rmatrix can be stated explicitly [17]. This

typically involves using a combinatorial interpretation for the R matrix. As described
in [17], the class of chains for which the combinatorial view is tractable is narrow.
However, in [25], the authors show that the combinatorial interpretation extends to
a broader class of chains. Their class does not include the M/M/k/setup, however,
which is more complicated because the transition (setup) rates are not independent
of the number of jobs in system. Much research has been done on improving matrix-
analytic methods to make the iteration faster. An example is [24], which develops a
fast iterative procedure for finding the rate matrix for a broader class of chains than
that in [25]. The authors in [24] also provide an explicit solution for the rate matrix
in terms of infinite sums. Their algorithm provides a solution technique that applies
to a class of chains called tree-like QBDs that includes the M/M/k/setup, although the
authors do not make reference to the M/M/k/setup or any variants thereof.

2.2 Generating function-based approaches

Generating functions have also been applied to solve chains with a repeating structure.
Like matrix-analytic methods these are not intuitive: Generating function approaches
involve guessing the form of the solution and then solving for the coefficients of
the guess, often leading to long computations. In theory, they can be used to solve
very general chains (see for example [1]). We initially tried applying a generating
function approach to the M/M/2/setup and found it to be incredibly complex and
without intuition. This led us to seek a simpler and more intuitive approach.

2.3 M/M/k with vacations

Many papers have been published regarding the M/M/k system with vacations; see,
for example, [18,23,27,28]. While the Markov chain for the M/M/k with vacations
looks similar to the M/M/k/setup, the dynamics of the two systems are very different.

123

Author's personal copy

Queueing Syst

A server takes a vacation as soon as it is idle, and there are no jobs in the queue. By
contrast, a setup time is initiated by jobs arriving to the queue. In almost all of the
papers involving vacations, the vacation model is severely restricted, allowing only a
fixed group of servers to go on vacation at once. This is very different from our system
in which any number of servers may be in setup at any time. The model in [18] comes
closest to our model, although the authors of that study use generating functions and
assume that all idle servers are on vacation, rather than one server being in setup for
each job in queue, which makes the transitions in their chain to be independent of the
number of jobs.

2.4 Restricted models of M/M/k with setup

There have been a few papers [2,3,10] that consider a very restricted version of the
M/M/k/setup, wherein at most one server can be in setup at a time. There has also
been prior work [20] that considers anM/M/k systemwherein a fixed subset of servers
can be turned on and off based on load. The underlying Markov chains for all of
these restricted systems are analytically tractable and lead to very simple closed-form
expressions, since the rate at which servers turn on is always fixed. Our M/M/k/setup
system is more general, allowing any number of servers to be in setup. This makes
our problem much more challenging.

2.5 How our work differs from all of the above

To the best of our knowledge, we are the first to derive exact closed-form results for
the M/M/k/setup problem, with k > 1. Our solution was made possible by a new
way of combining renewal reward theory and recursive techniques. Our approach
results in exact solutions, does not require any iteration, and does not involve infinite
sums. Importantly, our approach is highly intuitive and very easy to apply. Using
our renewal-based approach, we go much further than the M/M/k setup, deriving
exact closed-form results for important variants such as the M/M/k/setup/delayed-
off and the M/M/k with multiple types of setups, neither of which has been solved
analytically.

3 Model

In our model jobs arrive according to a Poisson process with rate λ and are served
at rate μ = 1

E[S] , where S denotes the job size and is exponentially distributed. For
stability, we assume that k · μ > λ, where k is the number of servers in the system.

3.1 M/M/k/setup

In theM/M/k/setup system, each of the k servers is in one of three states: off, on (being
used to serve a job), or setup. When a server is on or in setup, it consumes peak power
of Ppeak watts. When a server is off, it consumes zero power. Thus, when servers

123

Author's personal copy

Queueing Syst

are not in use, they are immediately turned off to save power. Every arriving job that
comes into the system picks an off server, if one exists, and puts it into setup mode; the
job then joins the queue. We use I to denote the setup times, with E[I] = 1

α
. Unless

stated otherwise, we assume that setup times are exponentially distributed. When a
job completes service at a server, say server s1, and there are no remaining jobs left
in the queue, then server s1 is immediately turned off. However, if the queue is not
empty, then server s1 is not turned off, and the job at the head of the queue is directed
to server s1. Note that if the job at the head of the queue was already waiting on another
server, say server s2, in setup mode, the job at the head of the queue is still directed
to server s1. At this point, if there is a job in the queue that did not setup an off server
on arrival (because there were no off servers), then server s2 continues to be in setup
for this job. If no such job exists in the queue, then server s2 is turned off.
The Markov chain for the M/M/k/setup system is shown in Fig. 1. Each state is

denoted by the pair (i, j), where i is the number of on servers, and j is the number
of jobs in the system. Thus, the number of servers in setup is min{ j − i, k − i}. Note
that the Markov chain is infinite in one dimension.

3.2 M/M/k/setup/delayedoff

The M/M/k/setup/delayedoff system is the same as the M/M/k/setup system, except
that idle servers are not immediately turned off. Specifically, when a job completes
service at a server, say server s1, and there are no remaining jobs in the queue, s1
remains waiting in the idle state for an exponentially distributed amount of time with
mean twait = 1

β
. If a new job arrives while server s1 is waiting, the job is immediately

directed to s1, which is already on. However, if no jobs arrive during server s1’s waiting
period, then server s1 is turned off. Intuitively, a higher twait results in lower response
time, since servers are on longer, but may also increase power usage, since idle servers
consume significant power.
The Markov chain for the M/M/k/setup/delayedoff system is shown in Fig. 2. The

chain is the same as that for M/M/k/setup, except for the new gray shaded states which
represent states with idle servers. As before, each state is denoted by the pair (i, j),
where i is the number of on or idle servers, and j is the number of jobs in the system.
For theM/M/k/setup/delayedoff system, each server can be in one of four states: off, on
(busy), idle, or setup. If i < j , then the number of servers in setup is min{ j− i, k− i},
and there are no idle servers. If i > j (gray shaded states), the number of idle servers
is (i − j), and there are no servers in setup. If i = j , no servers are idle or in setup.

3.3 M/M/k/setup/sleep

TheM/M/k/setup/sleep is motivated by servers with sleepmodes [11,19], which allow
an idle server to either be turned off or put to sleep. When a server is turned off, it
consumes zero power. However, turning on an off server requires an exponentially
distributed setup time, with rate α. By contrast, when a server is sleeping, it consumes
some non-zero power, Psleep watts, which is usually much smaller than the idle power,
Pidle watts [11,19]. When a sleeping server is turned on, it requires an exponentially

123

Author's personal copy

Queueing Syst

Fig. 2 M/M/k/setup/delayedoffMarkov chain. Each state is denoted by the pair (i, j), where i is the number
of on or idle servers, and j is the number of jobs in the system. If i < j , then the number of servers in setup
is min{ j − i, k − i}, and there are no idle servers. If i > j (gray shaded states), the number of idle servers
is (i − j), and there are no servers in setup. If i = j , no servers are idle or in setup

distributed setup time, with rate ω > α. Thus, there is a tradeoff between turning off
an idle server versus putting it to sleep.
One simple idea that leverages sleep states is to designate some subset of the k

servers, say the first s servers, to “sleep” when idle, whereas the remaining (k − s)
servers are turned off when idle. An interesting question is what is a good value of
s. To answer this question we introduce the M/M/k/setup/sleep model, which is the
same as the M/M/k/setup, except that s ≤ k servers have a fast setup rate of ω and
(k−s) servers have a slow setup rate of α (see Fig. 3). As we will see later, the tradeoff
between mean response time and mean power is highly sensitive to the choice of s
(see Fig. 7c, d).
For tractability, we make the following assumptions about the M/M/k/setup/sleep

model: (i) In any group of servers in setup, we assume that the servers that have a fast
setup rate (ω) complete setting up first. Thus, if we are in state (i, j) with i < s (gray
shaded states in Fig. 3), the first (s − i) servers in setup will have a fast setup rate.
Note that the i servers already on in state (i, j), with i ≤ s, are those that had a fast
setup rate. Thus, when we have i ≤ s servers busy, and a server is no longer in use,
we put the server to sleep (as opposed to turning it off). (ii) If we have i > s servers
busy, and a server is no longer in use, we turn the server off (as opposed to putting it to
sleep). This assumption allows us to save a lot of power when load goes down since off
servers consume zero power. The above two assumptions are primarily for tractability
of the M/M/k/setup/sleep Markov chain. In practice, ω is significantly higher than α.
In this regime, we simulated anM/M/k/setup/sleep system with and without the above
two assumptions and found the results to be qualitatively unchanged.

123

Author's personal copy

Queueing Syst

Fig. 3 M/M/k/setup/sleep Markov chain. Each state is denoted by the pair (i, j), where i is the number of
on servers, and j is the number of jobs in the system. The number of servers in fast setup is s, which in this
case is s = 2. The number of servers in setup is min{ j − i, k − i}. If i < s (gray shaded states), the first
(s− i) servers setting up have a fast setup rate, ω, while the other servers in setup have a slow setup rate, α

4 Our renewal-based approach

In this section, we provide a high-level description of our renewal-based approach,
which yields exact, closed-form solutions for a range of Markov chains, including the
M/M/k/setup (see Sects. 5, 6 and 7), the M/M/k/setup/delayedoff (see Sect. 8) and the
M/M/k/setup/sleep (see Sect. 9).
Our renewal-based approach works by deriving the expected “reward” earned

per unit time in a Markov chain, where the reward could be any quantity of inter-
est. In the context of our M/M/k/setup problem, the reward earned at time t , R(t),
could be the number of jobs in system at time t , the square of the number of
jobs in system, the current power usage, the number of servers that are on, or
any other reward that can be expressed as a function of the state of the Markov
chain.
To analyze the average rate of earning reward, we designate a renewal state, say

(0, 0),1 which we call the home state, and then consider a renewal cycle to be the
process of moving from the home state back to the home state. By renewal-reward
theory, the average rate of earning reward is the same as the mean reward earned over
a renewal cycle, which we denote by R, divided by the mean length of the renewal
cycle, denoted by T .

1 In principle, any state can be chosen as the renewal state, but some states allow for an easier (or shorter)
analysis.

123

Author's personal copy

Queueing Syst

Fig. 4 M/M/1/setup Markov chain with the repeating portion highlighted in gray and the border states
shaded black

Fig. 5 M/M/2/setup Markov chain with the repeating portion highlighted in gray and the border states
shaded black

Average rate of earning = R
T =

E
[∫
cycle R(t) dt

]
E
[∫
cycle 1 dt

]

For example, if the goal is to find the mean number of jobs, E[N], for our chain, we
simply define R(t) to be the number of jobs at time t , which can be obtained from the
state of the Markov chain at time t .
It turns out that the quantitiesT andR are very easy to compute! Consider aMarkov

chain, such as that in Fig. 4 or Fig. 5. The repeating portion of the chain is shown in
gray. There are a finite number of border states which sit at the edge of the repeating
chain and are colored black. We will see that computing T andR basically reduces to
writing one equation for each border state2. For the case of T , we will need the mean
time to move one step left from each border state. For the case ofR, we will need the
mean reward earned when moving one step left from each border state. Computing
these border state quantities is made very easy via some neat recursion lemmas. We

2 Several techniques in the literature such as matrix-analytic methods [17] and stochastic complementa-
tion [22] also deal with border states, although none of them involve renewal-reward theory.

123

Author's personal copy

Queueing Syst

demonstrate this process in the examples below. There are a few details which we will
defer until after these examples. For instance, in general, it is necessary to also add
equations for the non-repeating portion of the Markov chain. See Sects. 7 and 10 for
more details on our renewal-based approach. Note that matrix analytic methods also
sometimes make use of quantities such as the time to move one step left in a repeating
chain [17].

5 M/M/1/setup

In this section, we illustrate our renewal-based approach by applying it to the simple
M/M/1/setup system, whose Markov chain is shown in Fig. 4. Here, the state of the
system is represented as (i, j), where i ∈ {0, 1} is the number of servers on and
0 ≤ j <∞ is the number of jobs in the system. In general, i represents the depth (or
row number) of the state, and j represents the level (or column number) of the state.
We start by deriving E[N], the mean number of jobs, and then move to more complex
metrics. We choose the renewal state to be (0, 0) and we define the reward earned at
time t , R(t), to be N (t), the number of jobs in the system at time t . As explained in
Sect. 4, all we need is T andR.

5.1 Deriving T via T L
0,1 and T L

1,1

T is the mean time to get from our home state (0, 0) back to (0, 0). This can be viewed
as 1

λ
, the mean time until we leave (0, 0) (which takes us to (0, 1)) plus the mean time

to get home from (0, 1). We make the further observation that the mean time to get
home from (0, 1) is equal to T L

0,1 (using notation from Table 1), the mean time to move
left one level from (0, 1) (since moving left can only put us in (0, 0)). We thus have

T = 1
λ
+ T L

0,1 (1)

We now need an equation for T L
0,1 for the border state (0, 1), which will require

looking at the other border state, (1, 1), as well. Starting with border state (1, 1), it is
clear that T L

1,1 is simply the mean length of an M/M/1 busy period, B1. Thus, we have

T L
1,1 = B1 = 1

μ−λ (2)

T L
0,1 involves waiting in state (0, 1) for expected time

1
α+λ , before conditioning

on where we transition to next. If we go to state (1, 1) we need an additional T L
1,1.

However if we go to state (0, 2)we need to add on the time to move one step left from
(0, 2) (which by Fig. 4 takes us to (1, 1)) and then an additional T L

1,1. That is,

T L
0,1 =

1

λ+ α +
α

λ+ α · T L
1,1 +

λ

λ+ α
(

T L
0,2 + T L

1,1

)
(3)

123

Author's personal copy

Queueing Syst

It is now time to invoke one of our recursion lemmas, which holds for anyM/M/k/setup
chain:

Lemma 1 (Recursion lemma for mean time) For the M/M/k/setup, the mean time to
move one step left from state (i, j), T L

i, j , is the same for all j ≥ k.

Lemma 1 follows from the fact that the repeating portion of the Markov chain is
identical for all states in a given row. The full proof of Lemma 1 (along with the proofs
of all other lemmas) is presented in Appendix 1.
Using Lemma 1, we replace T L

0,2 in Eq. (3) with T L
0,1 to get

T L
0,1 = 1

λ+α + α
λ+α · T L

1,1 + λ
λ+α

(
T L
0,1 + T L

1,1

)
(4)

Finally, noting that T L
1,1 = B1 from Eq. (2), we have that

T L
0,1 =

1

λ+ α +
α

λ+ α · B1 + λ

λ+ α
(

T L
0,1 + B1

)
�⇒ T L

0, j = T L
0,1 =

1+ (λ+ α)B1
α

(5)

Substituting T L
0,1 from above into Eq. (1) gives us T :

T = μ(λ+α)
λα(μ−λ) (6)

5.2 DerivingR via RL
0,1 and RL

1,1

R denotes the reward earned in moving from (0, 0) back to (0, 0). Observing that we
earn 0 reward in state (0, 0) (because there are no jobs in the system in that state),
and observing that from state (0, 0) we can only next move to (0, 1), we have (using
notation from Table 1):

R = RL
0,1 (7)

It now remains to compute the reward earned in moving one step left from (0, 1),
which will require looking at the other border state, (1, 1), as well.
To do this, we invoke another recursion lemma, which again holds for any

M/M/k/setup system:

Lemma 2 (Recursion lemma formean reward)For the M/M/k/setup, the mean reward
earned in moving one step left from state (i, j+1), RL

i, j+1, satisfies RL
i, j+1 = RL

i, j+T L
i, j

for all j ≥ k, where the reward tracks the number of jobs in the system.

123

Author's personal copy

Queueing Syst

Table 1 Variables used in our analysis of E[N]
Variable Description

T Mean length of the renewal cycle

R Mean reward earned during a renewal cycle

T L
i, j Mean time until we first move one level left of (i, j), starting from (i, j)

RL
i, j Mean reward earned until we first move one level left of (i, j), starting from (i, j)

pL
i→d Probability that after we first move one level left from state (i, j), we are at depth d

Bk Mean length of an M/M/k busy period

Applying Lemma 2 to the Markov chain shown in Fig. 4, we have

RL
1,1 =

1

λ+ μ · 1+
μ

λ+ μ · 0+
λ

λ+ μ
(

RL
1,2 + RL

1,1

)
= 1

λ+ μ +
λ

λ+ μ
(
(RL
1,1 + T L

1,1)+ RL
1,1

)
= 1

λ+ μ +
λ

λ+ μ
(
(RL
1,1 + B1)+ RL

1,1

)
(from Eq. (2)) (8)

�⇒ RL
1,1 =

1+ λB1
μ− λ (9)

Similarly, for border state (0, 1), we have

RL
0,1 =

1

λ+ α · 1+
α

λ+ α · RL
1,1 +

λ

λ+ α
(

RL
0,2 + RL

1,1

)
= 1

λ+ α +
α

λ+ α · RL
1,1

+ λ

λ+ α
(
(RL
0,1 + T L

0,1)+ RL
1,1

)
(from Lemma 2)

�⇒ RL
0,1 =

1+ λT L
0,1 + (λ+ α)RL

1,1

α
(10)

Substituting RL
0,1 from above into Eq. (7) gives usR:

R = μ(λ+ α)(μ− λ+ α)
α2(μ− λ)2 (11)

5.3 Deriving E[N]

Since E[N] = R
T , combining Eqs. (6) and (11), we get

E[N] = R
T = λ

α
+ λ

μ− λ (12)

123

Author's personal copy

Queueing Syst

Table 2 Variables used in our transform analyses

Variable Description

Ṙ Mean reward earned (for z-transform) during a renewal cycle

Ė Mean reward earned (for transform of power) during a renewal cycle

ṘL
i, j Mean reward earned (for z-transform) until we first move one level left of

(i, j), starting from (i, j)

Ė L
i, j Mean reward earned (for z-transform of power) until we first move one

level left of (i, j), starting from (i, j)

The second term in the right-hand side of Eq. (12) can be identified [15] as the
mean number of jobs in anM/M/1 system (without setup). Thus, Eq. (12) is consistent
with the known decomposition property for the M/M/1/setup system [26].

5.4 Deriving N̂ (z) and T̃ (s)

Deriving the z-transform of the number of jobs, N̂ (z) = E[zN], is just as easy as
deriving E[N]. The only difference is that our reward function is now R(t) = zN (t),
where N (t) is again the number of jobs in the system at time t . Thus,

N̂ (z) = E[zN] = Ṙ
T ,

where Ṙ = E
[∫
cycle zN (t)dt

]
and T is the same as before.

We will again invoke a recursion lemma which applies to any M/M/k/setup (using
notation from Table 2):

Lemma 3 (Recursion lemma for transform of reward) For the M/M/k/setup, ṘL
i, j+1 =

z · ṘL
i, j , for all j ≥ k, where Ṙ tracks the z-transform of the number of jobs in the

system.

Let us now express Ṙ by conditioning on the first step from (0, 0):

Ṙ = 1
λ
+ ṘL

0,1 (13)

We again need one equation per border state:

ṘL
1,1 =

1

λ+ μ · z + λ

λ+ μ
(

z · ṘL
1,1 + ṘL

1,1

)
ṘL
0,1 =

1

λ+ α · z + α

λ+ α · ṘL
1,1 +

λ

λ+ α
(

z · ṘL
0,1 + ṘL

1,1

)

Solving the above system and substituting ṘL
0,1 into Eq. (13) allows us to express

Ṙ in closed form. This gives us N̂ (z), after some algebra, as follows:

N̂ (z) = E[zN] = Ṙ
T = α(μ−λ)

(μ−λz)(α+λ−λz) (14)

123

Author's personal copy

Queueing Syst

To get the Laplace transform of response time, T̃ (s), we use the distributional
Little’s Law [13] (since M/M/1/setup is a First-In-First-Out system):

T̃ (s) = N̂
(
1− s

λ

) = α(μ−λ)
(s+α)(μ+s−λ) (15)

5.5 Deriving P̂(z)

We now derive P̂(z), the z-transform of the power consumed for the M/M/1/setup.
The server consumes zero power when it is off, but consumes peak power, Ppeak watts,
when it is on or in setup. This time, the reward is simply the transform of the energy

consumed over the renewal cycle, Ė = E
[∫
cycle z P(t)dt

]
, where P(t) is the power

consumed at time t . We begin with the recursive lemma for Ė L
i, j , just like we had

Lemma 3 for ṘL
i, j .

Lemma 4 (Recursion lemma for transform of power) For the M/M/k/setup, Ė L
i, j+1 =

Ė L
i, j = T L

i, j · zk·Ppeak , for all j ≥ k.

Lemma 4 gives us Ė L
i, j in closed form, in terms of T L

i, j . Following the usual renewal-
reward approach, we get

P̂(z) = E[z P] = Ė
T = α(μ− λ)+ λ(μ+ α)z Ppeak

μ(λ+ α) (16)

6 M/M/2/setup

The M/M/2/setup chain shown in Fig. 5 is analyzed similarly to the M/M/1/setup,
except that there are now three border states, (0, 2), (1, 2), and (2, 2). The only com-
plication is that when moving one level left from a given state, the resulting row is
non-deterministic. For example, when moving left from (1, 3) in Fig. 5, we may end
up in row 1 at (1, 2) or row 2 at (2, 2). We use pL

i→d to denote the probability that
once we move one level left from (i, j), we will be at depth d.3 The following lemma
proves that pL

i→d is independent of j for all states (i, j) in the repeating portion.

Lemma 5 (Recursion lemma for probability) For the M/M/k/setup, for each 0 ≤ d ≤
k, and for each 0 ≤ i ≤ k, pL

i→d is the same for all j ≥ k.

Thus, it suffices to compute pL
i→d for the border states. These probabilities are used

in Sect. 6.2.

6.1 Deriving pL
i→d

Solving for the pL
i→d is easiest “bottom-up” (starting from the greatest depth, i). For

i = 2, we have pL
2→2 = 1 for all j > 2, since we stay at depth 2 after moving left.

3 See Footnote 2.

123

Author's personal copy

Queueing Syst

For i = 1 and i = 0, we follow the same approach of conditioning on the first step
and using recursion lemmas:

pL
1→1 =

μ

λ+ μ+ α +
λ

λ+ μ+ α
(

pL
1→1

)2
(17)

pL
0→1 =

2α

λ+ 2α
(

pL
1→1

)
+ λ

λ+ 2α
(

pL
0→1

) (
pL
1→1

)
(18)

Equations (17) and (18) can now be solved in closed form since they are of degree at
most 2. Note that pL

1→2 = 1− pL
1→1 and pL

0→2 = 1− pL
0→1.

6.2 Deriving N̂(z) via ṘL
0,2 ṘL

1,2, and ṘL
2,2

To derive N̂ (z) = E[zN], we again find Ṙ and T , where Ṙ = E
[∫
cycle zN (t)dt

]
,

and T = E
[∫
cycle 1dt

]
= Ṙ

∣∣∣∣
z=1
. Using (1, 1) as our renewal state and the same

arguments as in Sect. 5.4, we have

Ṙ = z

λ+ μ +
μ

λ+ μ
(
1

λ
+ z

λ+ α +
λ

λ+ α · ṘL
0,2

)
+ λ

λ+ μ · ṘL
1,2 (19)

It now remains to compute the reward equations for the border states: ṘL
0,2, ṘL

1,2,

and ṘL
2,2.

ṘL
2,2 =

z2

λ+ 2μ +
λ

λ+ 2μ
(

z · ṘL
2,2 + ṘL

2,2

)
(20)

ṘL
1,2 =

z2

λ+ μ+ α +
α

λ+ μ+ α · ṘL
2,2

+ λ

λ+ μ+ α
(

z · ṘL
1,2 +

(
pL
1→1

)
ṘL
1,2 +

(
1− pL

1→1
)

ṘL
2,2

)
(21)

ṘL
0,2 =

z2

λ+ 2α +
2α

λ+ 2α · ṘL
1,2

+ λ

λ+ 2α
(

z · ṘL
0,2 +

(
pL
0→1

)
ṘL
1,2 +

(
1− pL

0→1
)

ṘL
2,2

)
(22)

Solving the above system of linear equations and substituting ṘL
0,2 and ṘL

1,2 into
Eq. (19) allows us to solve for N̂ (z) in closed form as follows:

N̂ (z) = E[zN] = Ṙ
T = Ṙ

Ṙ
∣∣
z=1

= λ(λ+ α)(z + λṘL
1,2)+ μ(α + λ(1+ z + λṘL

0,2))

λ(λ+ α)(1+ λT L
1, j)+ μ(α + λ(2+ λT L

0, j))
(23)

123

Author's personal copy

Queueing Syst

6.3 Deriving T̃ (s)

For the M/M/1/setup system, we were able to derive T̃ (s) directly from N̂ (z) via the
distributional Little’s Law, since theM/M/1/setup is a FIFO system. Unfortunately, the
M/M/2/setup system is not FIFO, since overtaking can occur. However, we can still
apply the distributional Little’s Law to the queue of the M/M/2/setup since the queue
is FIFO. The analysis of N̂Q(z) is very similar to that of N̂ (z) and is thus omitted:

N̂Q(z) = λ(λ+α)(1+ λṘL
1,2)+μ(α+ λ(1+ z+ λṘL

0,2))

λ(λ+α)(1+λT L
1, j)+μ(α+ λ(2+ λT L

0, j))
(24)

We now apply the distributional Little’s Law to get T̃Q(s) from N̂Q(z). Finally,
since T = TQ + S, where S ∼ Exp(μ) is the job size distribution, we have

T̃ (s) = T̃Q(s) · μ

s + μ = N̂Q

(
1− s

λ

)
· μ

s + μ

=
μ
(
λ(λ+ α)(1+ λṘL

1,2)+ μ(α − s + λ(2+ λṘL
0,2))

)
(s + μ)

(
λ(λ+ α)(1+ λT L

1, j)+ μ(α + λ(2+ λT L
0, j))

) (25)

6.4 Deriving P̂(z)

The derivation of P̂(z) is similar to that of N̂ (z) in Sect. 6.2, and is thus omitted.

P̂(z) = μ(α + λ)+ λ(λ+ μ+ α)z Ppeak

μ(α + λ)+ λ(λ+ μ+ α)+ λ2(μT L
0, j + (λ+ α)T L

1, j)

+ λ2(μT L
0, j + (λ+ α)T L

1, j)z
2Ppeak

μ(α + λ)+ λ(λ+ μ+ α)+ λ2(μT L
0, j + (λ+ α)T L

1, j)
(26)

7 M/M/k/setup

The M/M/k/setup chain shown in Fig. 1 is analyzed similarly to M/M/2/setup. The
border states for M/M/k/setup are (i, k), with 0 ≤ i ≤ k. In the M/M/k/setup, the
non-repeating portion consists of O(k2) states. For k = 1 and k = 2, we did not have
to explicitly write reward equations for the non-repeating states; these were implicitly
folded into other equations (see, for example, the term in parentheses in Eq. (19)).
However, for arbitrarily large k, it is necessary to write reward equations for the states
in the non-repeating portion.We use RH

i, j to denote the reward earned until we reach the

home state, starting from state (i, j) in the non-repeating portion. The RH
i, j equations

will be discussed in Sect. 7.3.
We illustrate our approach for M/M/k/setup by deriving N̂Q(z), from which we

can obtain T̃ (s). For a detailed demonstration of this technique for the case of k = 3,
see [7]. One might think that analyzing the M/M/k/setup will require solving a kth

123

Author's personal copy

Queueing Syst

degree equation. This turns out to be false.Analyzing theM/M/k/setup via our renewal-
based approach only requires solving equations which are, at worst, quadratic.
We choose (k − 1, k − 1) to be the renewal state. Using our approach, Ṙ can be

expressed as

Ṙ = 1+ (k − 1)μṘH
k−2,k−2 + λṘL

k−1,k
λ+ (k − 1)μ (27)

We now derive the necessary pL
i→d , ṘL

i,k , and ṘH
i, j for computing Ṙ.

7.1 System of equations for pL
i→d

The system of equations for pL
i→d is as follows:

4

pL
i→i =

λ(pL
i→i)

2 + iμ

λ+ iμ+ (k − i)α
, (i < k) (28)

pL
i→d =

λ
(∑d

�=i

{
(pL

i→�)(p
L
�→d)

})+ (k − i)α(pL
i+1→d)

λ+ iμ+ (k − i)α
(i < d < k) (29)

pL
i→k = 1−

k−1∑
�=i

pL
i→�, (i ≤ k) (30)

The summation inEq. (29) above denotes the possible intermediate depths � through
which we canmove from initial depth i to final depth d. The above system of equations
involves linear and quadratic equations (including products of two unlike variables),
and can be solved symbolically to find pL

i→d in closed form (see Appendix 2).

7.2 Deriving ṘL
i,k for the repeating portion

The system of equations for ṘL
i,k is as follows:

ṘL
0,k =

zk + λ
(

z ṘL
0,k +

∑k
�=1

{
(pL
0→�)(Ṙ

L
�,k)

})
+ kα ṘL

1,k

λ+ kα
(31)

ṘL
i,k =

zk−i + λ
(

z ṘL
i,k +

∑k
�=i

{
(pL

i→�)(Ṙ
L
�,k)

})
λ+ iμ+ (k − i)α

+ (k − i)α ṘL
i+1,k

λ+ iμ+ (k − i)α
, (0 < i < k) (32)

4 The definition given for pL
i→d applies in all cases except when j = k and d ∈ {k − 1, k}. When j = k,

we can never end in depth k when moving one step to the left; in this case, we interpret pL
i→k (or pL

i→k−1)
as the probability that we first moved one step left by transitioning out of a state in depth k (or k − 1).

123

Author's personal copy

Queueing Syst

ṘL
k,k =

1+ λ(z ṘL
k,k + ṘL

k,k)

λ+ kμ
(33)

In the above, we have used the fact that ṘL
i,k+1 = z ṘL

i,k from Lemma 3. The above

system of linear equations can be easily solved to find ṘL
i,k in closed form (see Appen-

dix 2).

7.3 Deriving ṘH
i, j for the non-repeating portion

The system of equations for ṘH
i, j is as follows:

ṘH
0, j =

z j + λṘH
0, j+1 + jα ṘH

1, j

λ+ jα
, (j < k − 1) (34)

ṘH
i, j =

z j−i + λṘH
i, j+1 + iμṘH

i, j−1 + (j − i)α ṘH
i+1, j

λ+ iμ+ (j − i)α
(0 < i < j < k − 1)

(35)

ṘH
i,i =

1+ λṘH
i,i+1 + iμṘH

i−1,i−1
λ+ iμ

, (0 < i < k − 1) (36)

ṘH
i,k−1 =

zk−1−i + λ
(

ṘL
i,k +

∑k
�=i

{
(pL

i→�)(Ṙ
H
�,k−1)

})
λ+ iμ+ (k − 1− i)α

+ iμṘH
i,k−2 + (k − 1− i)α ṘH

i+1,k−1
λ+ iμ+ (k − 1− i)α

, (i < k − 1) (37)

ṘH
k−1,k−1 = 0 (38)

Equations (34), (35), and (36), are simply based on the rate transitions in the non-
repeating portion of the Markov chain. Equation (37) describe the rewards earned
when starting in states in the non-repeating portion of the chain that can transition
to the repeating portion of the chain via the border states. When we have an arrival
in one of these states, we transition to the repeating portion of the chain, and after
earning some reward, return to the non-repeating portion of the chain. Finally, Eq. (38)
guarantees that any transition to state (k − 1, k − 1) will end the renewal cycle. The
above system of linear equations can again be easily solved to find ṘH

i, j in closed form
(see Appendix 2).
After solving for pL

i→d , ṘL
i,k and ṘH

i, j , we can derive Ṙ, and consequently N̂Q(z),

via Eq. (27). T̃ (s) can then be derived by using the fact T̃ (s) = T̃Q(s) · μ
s+μ =

N̂Q
(
1− s

λ

) · μ
s+μ .

We applied the above steps to obtain a closed-form expression for N̂Q(z) for the
M/M/3/setup. We refer the reader to [7] for full details.

123

personal copy

Queueing Syst

8 M/M/k/setup/delayedoff

The Markov chain for M/M/k/setup/delayedoff is shown in Fig. 2. Our renewal state
this time will be (k, k − 1); thus, Ṙ, the reward earned when going from (k, k − 1)
back to (k, k − 1) can be expressed as

Ṙ = 1+ (k − 1)μṘH
k,k−2 + λṘL

k,k + β ṘH
k−1,k−1

λ+ (k − 1)μ+ β (39)

The analysis for M/M/k/setup/delayedoff via our renewal-based approach is very
similar to that of M/M/k/setup in Sect. 7 above. In fact, since the repeating portion for
the two chains is the same, the system of equations for pL

i→d and ṘL
i, j is identical, but

the non-repeating portion for the two chains is different. We now set up the system of
equations for solving ṘH

i, j .

8.1 Deriving ṘH
i, j for the non-repeating portion

The system of equations for ṘH
i, j is as follows:

ṘH
0, j =

z j + λṘH
0, j+1 + jα ṘH

1, j

λ+ jα
(j < k − 1) (40)

ṘH
i,0 =

1+ λṘH
i,1 + iβ ṘH

i−1,0
λ+ iβ

(0 < i ≤ k) (41)

ṘH
k, j =

1+ λṘH
k, j+1 + jμṘH

k, j−1 + (k − j)β ṘH
k−1, j

λ+ jμ+ (k − j)β
(1 ≤ j < k − 1) (42)

ṘH
i, j =

z j−i + λṘH
i, j+1 + iμṘH

i, j−1 + (j − i)α ṘH
i+1, j

λ+ iμ+ (j − i)α
(0 < i < j < k − 1)

(43)

ṘH
i,i =

1+ λṘH
i,i+1 + iμṘH

i,i−1
λ+ iμ

(0 < i < k − 1) (44)

ṘH
i, j =

1+ λṘH
i, j+1 + jμṘH

i, j−1 + (i − j)β ṘH
i−1, j

λ+ jμ+ (i − j)α
(0 < j < i < k) (45)

ṘH
i,k−1 =

zk−1−i + λ
(

ṘL
i,k +

∑k
�=i

{
(pL

i→�)(Ṙ
H
�,k−1)

})
λ+ iμ+ (k − 1− i)α

+ iμṘH
i,k−2 + (k − 1− i)α ṘH

i+1,k−1
λ+ iμ+ (k − 1− i)α

(i ≤ k − 1) (46)

ṘH
k,k−1 = 0 (47)

123

Author's personal copy

Queueing Syst

The above system of linear equations can again be solved to find ṘH
i, j in closed

form. This yields Ṙ, and consequently N̂Q(z), via Eq. (39).

9 M/M/k/setup/sleep

The Markov chain for M/M/k/setup/sleep is shown in Fig. 3. The analysis for
M/M/k/setup/sleep via our renewal-based approach is again similar to that of
M/M/k/setup in Sect. 7. The only difference is in the setup transition rate (down-
ward transition arrows in the Markov chain): For the M/M/k/setup, the setup rate in
state (i, j) is α ·min{ j − i, k − i}. For the M/M/k/setup/sleep, the setup rate in state
(i, j) is more complicated. When i ≥ s, the setup rate is still α · min{ j − i, k − i}.
However, if i < s, the setup rate isω·(j−i) if j ≤ s andω·(s−i)+α ·min{ j−s, k−s}
if j > s. This can be explained based on the M/M/k/setup/sleep model description in
Sect. 3.3 and the Markov chain in Fig. 3. Based on the above setup rates, we can easily
modify the M/M/k/setup sets of equations for pL

i→d , ṘL
i,k and ṘH

i, j from Sects. 7.1,
7.2 and 7.3 respectively, to represent the M/M/k/setup/sleep system of equations. The
equation for Ṙ will change accordingly.

10 Generalizing our renewal-based approach

Our renewal-based approach can be applied to a very broad class of Markov chains
beyond the M/M/k/setup: Our approach can reduce the analysis of any 2-dimensional,
irreducible Markov chain which is repeating and infinite in one dimension to the prob-
lem of solving a system of polynomial equations. Further, if in the repeating portion
all horizontal transitions are skip-free, and all vertical transitions are unidirectional
(as shown in Fig. 6), the resulting system of equations will be of degree at most two,
yielding a closed-form solution. In this section, we explain the application of our
renewal-based approach to general repeating Markov chains in this skip-free, unidi-
rectional class, and also provide justification for the above claims regarding Fig. 6. We

Fig. 6 Figure depicting the class of Markov chains that can be analyzed in closed-form via our renewal-
based approach. In this class, the horizontal transitions are skip-free and the vertical transitions are unidi-
rectional. The repeating portion is highlighted in gray and the border states, bi , are shaded black. Note that
yi are the neighbors of x , and ψ(2) is the exit state in the non-repeating portion accessible from the border
state b2

123

Author's personal copy

Queueing Syst

note that in [24], the authors advance a different solution methodology that applies to
a similar, but not identical, class of Markov chains, which they call tree-like QBDs.

10.1 Formal description of Markov chains that are solvable in closed form

Formally, we consider Markov chains partitioned into a one-directionally infinite
repeating portion, and a finite non-repeating portion; in principle this partition is not
unique. We name the states in the repeating portion so that the set of these states is
given by {(i, j) : i ∈ {1, . . . ,m}, j ∈ {0, 1, 2, . . .}}, where i gives the “row” (depth)
associated with a state and j gives the “column” (level) associated with a state. We
will typically use x to denote an arbitrary state in the non-repeating portion.
For tractability, we restrict attention to reward functions taking on the form R(t) =

f (i)+ aj when the state at time t is (i, j) in the repeating portion of the chain (where
f is a real-valued function and a is a real constant), and R(t) = g(x) (where g is
a real-valued function) when the state at time t is x in the non-repeating portion of
the chain. We also allow for the z-transforms associated with such reward functions;
when computing the transform, the rate at which reward is earned in the state (i, j) is
Ṙ(t) = z f (i)+aj , while the rate at which reward is earned in state x is Ṙ(t) = zg(x).
Since the case of transforms is more general, the remainder of the analysis in this
section will consider the case of computing the z-transform.
The only states in the repeating portion that may be accessible to states in the non-

repeating portion in one transition are the border states bi = (i, 0), which are depicted
in Fig. 6. Moreover, the border states are the only states in the repeating portion that
are permitted to have nonzero transition rates to states in the non-repeating portion of
the chain.
The transitions out of states in the repeating portion are as follows:

– Horizontal forward transitions, moving one column to the right, from state (i, j)
to state (i, j + 1), with rate λi ≥ 0.

– Horizontal backward transitions, moving one column to the left, either (a) from
non-border state (i, j), i.e., j ≥ 1, to state (i, j − 1) with rate μi ≥ 0 or (b) from
border state bi = (i, 0) to some exit state ψ(i) in the non-repeating portion, with
rate μi ≥ 0. We note that ψ may map multiple rows to the same exit state in the
non-repeating portion.

– Vertical downward transitions, moving one or several rows lower, from state (i, j)
to state (d, j) for each d ∈ {i + 1, . . . ,m} with rate αi→d ≥ 0.

We note that the repeating structure of the chain is a consequence of the fact that the
transition rates do not depend on the column, j , associated with the state (i, j).
We denote by M the set of terminal rows, representing rows in the repeating portion

of the Markov chain from which no downward transitions occur (i.e., M = {i ′ : d ∈
{i ′ + 1, . . . ,m} ⇒ αi ′→d = 0}). Clearly, M is nonempty, as m ∈ M ; we require
μi ′ > λi ′ ≥ 0 for all i ′ ∈ M , in order to ensure that the Markov chain is irreducible.
For the same reason, we require λi > 0 whenever αd→i = 0 for all d ∈ {1, . . . , i−1};
in particular, we always require that λ1 > 0.
For more general chains, we relax the requirements of skip-free forward horizontal

transitions and unidirectional vertical transitions (we still require skip-free backward

123

Author's personal copy

Queueing Syst

transitions, although even this restriction can be relaxed by modifying the procedure
outlined in this section). That is, we allow the horizontal transitions in the forward
direction to skip columns (i.e., transitions from state (i, j) to state (i, j+�) for various
positive values of �) and the vertical transitions to be bidirectional (i.e., transitions from
state (i, j) to state (i, d) even when 1 ≤ d < i ≤ m). However, for these general
chains, our renewal-based approach does not guarantee closed-form solutions.

10.2 Analysis of Markov chains that are solvable in closed form

To begin our analysis, after specifying the nonrepeating portion and the repeating
portion, we fix a renewal point, or home state, say state 0, within the nonrepeating
portion. Our goal is to determine the mean reward, Ṙ = ṘH

0 , earned in traveling from
the home state back to the home state again. After computing this quantity, we can
determine the z-transform of the metric being tracked by the reward function, R̂(z),
by normalizing Ṙ, in accordance with renewal theory:

R̂(z) = Ṙ
T = Ṙ

Ṙ |z=1
(48)

Since ṘH
0 is determined by rewards earned in other states of the Markov chain, we

are interested in the quantities ṘH
y , the mean rewards earned in traveling from each

state y to the home state. For each state x in the nonrepeating portion, let Yx be the
set of states accessible from x within a single transition, and let the the transition rate
from x to y ∈ Yx be νx→y . We observe that ṘH

x is a sum of the mean reward during
our residence in x , which is earned at rate zg(x), and a weighted linear combination of
the rewards ṘH

y , with y ∈ Yx , (see Fig. 6). Therefore, for each x in the nonrepeating
portion, we have

ṘH
x = zg(x) +∑

y∈Yx
{νx→y ṘH

y }∑
y∈Yx

{νx→y} (49)

We call the set of these equations (Ia), and note that they are linear in the ṘH
x .

Since the chain is irreducible, at least one state in the nonrepeating portion of the
chain transitions directly to a state in the repeating portion of the chain. That is, at
least one state in the nonrepeating portion must transition to some border state, bi (see
Fig. 6). Hence, equation set (Ia) forms an underdetermined system of linear equations.
In order to solve for the ṘH

x (and in particular, Ṙ = ṘH
0), we would like to solve for

the mean rewards, ṘH
bi
, earned in traveling from each border state bi to the home state,

as at least one of these variables occurs in the system (Ia).
The mean reward, ṘH

bi
, consists of two parts: (a) the mean reward earned from the

time we enter bi until we leave the repeating portion, which we can think of as the
mean reward, ṘL

i , earned until we move “left” of the column j = 0 in the repeating
portion into the nonrepeating portion; and (b) the mean reward earned from when we
first exit the repeating portion until returning home, which is a probabilistic mixture
of some ṘH

ψ(i) for exit states ψ(i).

123

Author's personal copy

Queueing Syst

In order to formulate equations for ṘH
bi
, we introduce the notation pL

i→d . Given that

we are currently in state (i, j), pL
i→d gives the probability that we first move “left” of

the column j from row d. In particular, given that we are currently in state bi = (i, 0),
pL

i→d gives the probability that we first leave the repeating portion from row d. Using
this definition, we formulate equations for ṘH

bi
:

ṘH
bi
= ṘL

i +
m∑

d=i

{(pL
i→d)Ṙ

H
ψ(d)} (1 ≤ i ≤ m) (50)

ṘH
bi ′ = ṘL

i ′ + ṘH
ψ(i ′) (i ′ ∈ M) (51)

We call the set of these equations (Ib), and again note the linearity of these equations
in the variables ṘH

x and ṘH
bi
. We note that the set of equations (51) are simplifications

of Equations (50) in the particular cases where i is a terminal row.
Let (I) be the (finite) system of linear equations formed by taking the union of

Equation sets (Ia) and (Ib). Provided that for each i ∈ {1, . . . ,m}, ṘL
i is known in

closed form and for each i, d pair satisfying 1 ≤ i ≤ d ≤ m, pL
i→d is known in closed

form, the system of linear equations (I) can be solved symbolically in closed form.
Hence, it remains to determine the ṘL

i and the pL
i→d . The fact that the chain has a

repeating structure allows us to express the ṘL
i using a “recursion lemma” (similar to

Lemmas 2 and 3). In particular, we observe that the mean reward to move one step to
the left starting from (i, j) is zaj ṘL

i . Recalling that RL
i is the mean reward earned in

moving one step left starting from state bi = (i, 0), we have

ṘL
i =

z f (i) + λi
(
za ṘL

i +
∑m

d=1{(pL
i→d)Ṙ

L
d }

)+∑m
d=i+1{(αi→d)ṘL

d }
λi + μi +∑m

d=i+1{αi→d}
(1 ≤ i ≤ m) (52)

ṘL
i ′ =

z f (i ′) + λi ′(za ṘL
i ′ + ṘL

i ′)

λi ′ + μi ′
(i ′ ∈ M) (53)

The equations given by (53) are simplifications of particular cases of the equations
given by (52). As each equation given by (53) is an equation in only one variable, ṘL

i ′ ,
these can easily be solved, yielding

ṘL
i ′ =

z f (i ′)

μi ′ − λi ′ za
(i ′ ∈ M) (54)

Equations (52) form a (finite) system of linear equations in the variables RL
i ′ . We call

this linear system (II).
We note that the linear system (II) does not depend on (I), and so (II) can be solved

independently of (I), but not vice-versa. However, as with the system of equations
(I), solving (II) requires the determination of the pL

i→d in closed form. We proceed
to formulate yet another system of equations, (III), for the pL

i→d , again making use
of a recursion lemma (similar to Lemma 5) exploiting the repeating structure of the
Markov chain:

123

Author's personal copy

Queueing Syst

pL
i→i =

λi (pL
i→i)

2 + μi

λi + μi +∑m
�=i+1{αi→�} (1 ≤ i ≤ m) (55)

pL
i→d =

λi
(∑m

�=i {(pL
i→�)(p

L
�→d)}

)+∑m
�=i+1{(αi→�)(pL

�→d)}
λi + μi +∑m

�=i+1{αi→�}
(1 ≤ i < d ≤ m) (56)

pL
i ′→i ′ = 1 (∀i ′ ∈ M) (57)

Unlike the systemof equations (I) and (II), the systemof equations (III) is nonlinear,
as when moving to the left, starting in row d and ending in row i , we may transition
through various intermediate rows. Thus, pL

i→d may involve several other probability
terms. However, the equations in this system will be of degree at most two. This is
because skip-free horizontal transitions guarantee that the probability pL

i→d can be
expressed as a linear sum of products of only two intermediate terms of the form
(pL

i→�) · (pL
�→d), where � represents the intermediate rows that we can transition to

when going from i to d (as in Sect. 7.1). Further, the unidirectional vertical transitions
guarantee that i ≤ � ≤ d, which ensures that the intermediate probability terms do not
lead to higher-order dependencies between one other. Moreover, solving (III) does
not depend on the solution to (I) or (II). Thus, the probabilities, pL

i→d can be solved
for in closed-form by solving quadratic equations (including products of two unlike
terms) in a particular “bottom-up” order as explained in Appendix 2.
Once we have solved (III) symbolically, we substitute the symbolic values of the

pL
i→d into the linear system (II), and solve that system symbolically for the ṘL

i . We
next substitute the symbolic values of the ṘL

i together with the symbolic values of the
pL

i→d into linear system (I), which we can finally solve for the ṘH
x , and in particular

Ṙ = ṘH
0 . The final step is the straight-forward computation of the z-transform R̂(z)

from Equation (48), which completes the analysis.
Formore general chains (where horizontal transitions can skip columns and vertical

transitions can be bidirectional), we can set up the system of equations similarly to
Eqs. (48)–(57). The equations for these more general chains may include additional
terms for the new horizontal transitions in the equations for ṘL

i and pL
i→d . Moreover,

the quantities pL
i→d now exist even for cases where 0 ≤ d < i ≤ m. These additional

complications can result in systems of degree greater than 2 without closed-form
solutions.

11 Applications

In this section, we use our analytic results to evaluate the performance of M/M/k,
M/M/k/setup, M/M/k/setup/delayedoff and M/M/k/setup/sleep. In particular, we will
be interested in the mean response time, E[T], and the mean power consumption,
E[P], under these policies. Throughout, we assume a load of ρ = λ

kμ = 0.3 (or 30 %
load), setup times of 1

α
= 100 s (when the server is off) and 1

ω
= 25 s (when the

server is sleeping), and power consumption values of Ppeak = 200 W, Pidle = 140 W,
and Psleep = 14 W. These parameter values are based on empirical measurements

123

Author's personal copy

Queueing Syst

from prior work [4,11]. We consider job sizes with mean E[S] = 1 s (typical web
workloads [6]), E[S] = 10 s (database queries or secured transactions), and E[S] =
100 s (file download or upload), and system sizes ranging from k = 5 to k = 100
servers.
TheM/M/k policy keeps k servers always on. Servers that are not busy serving jobs

are left idle. The M/M/k/setup policy (see Sect. 3.1) immediately turns off idle servers
to save power. However, restarting an off server requires a setup time of 1

α
= 100 s. The

M/M/k/setup/delayedoff policy (see Sect. 3.2) is the same as the M/M/k/setup policy,
except that idle servers wait for an exponentially distributed amount of time with mean
twait = 1

β
before turning off. The performance of this policy depends on the choice of

the twait parameter. Finally, the M/M/k/setup/sleep policy (see Sect. 3.3) is the same
as the M/M/k/setup policy, except that s of the k servers go to sleep as opposed to
turning off, when idle. A sleeping server has a small setup time of 1

ω
= 25 s. The

performance of this policy depends on the choice of the s parameter. Before comparing
the above four policies, we first discuss how we choose the parameter value of twait
for M/M/k/setup/delayedoff and s for M/M/k/setup/sleep.

11.1 Choosing optimal parameter values

The tradeoff between E[P] and E[T] for M/M/k/setup/delayedoff is shown in Fig. 7a,
b. Each plotted point represents an (E[T], E[P]) pair associated with a specific value
of twait. Intuitively, as twait increases, E[T] decreases since we avoid setup times.
Moreover, before some threshold twait, E[P] decreases as twait increases, because we
avoid consuming power at peak rate by repeatedly putting servers in setup. However,
beyond this threshold twait, E[P] starts increasing on account of idle servers. Thus,
as twait increases, we get the plots in Fig. 7a, b, from right to left. We choose the twait
value that optimizes (i.e.,maximizes) the popularPerformance-Per-Wattmetric [8,11],
given by P PW = (E[T] · E[P])−1. These optimal values are shown in Fig. 7a, b.
We find that the optimal twait value decreases with an increase in E[S].
Figure 7c, d illustrate the tradeoff between E[P] and E[T]underM/M/k/setup/sleep

for different values of s. Intuitively, as s increases, E[T] decreases since we bene-
fit from faster setup times afforded by sleeping servers. As s increases, E[P] first
decreases since we avoid the severe power penalty of longer setup times. However,
beyond a certain s, E[P] increases on account of the sleeping servers. Thus, as s
increases, we get the plots in Fig. 7c, d, from right to left. Note that E[P] monotoni-
cally decreases for the case of E[S] = 1s in Fig. 7c. This is because 1

α
� E[S], and

thus, the decrease in power consumption by avoiding power penalties of longer setup
times outweighs the increase in power consumption because of Psleep. We choose the
s value that optimizes the PPW metric, as indicated in Fig. 7c, d. We find that the
optimal s value decreases with an increase in E[S].

11.2 Comparison of all policies

Figure 8 shows our results for E[T] and E[P] as a function of k for the case of
E[S] = 1 s. Comparing M/M/k (squares) and M/M/k/setup (circles), we see that

123

Author's personal copy

Queueing Syst

Fig. 7 E[P] versus E[T] for various values of twait and s. a E[S] = 1 s, b E[S] = 100 s, c E[S] = 1 s,
d E[S] = 100 s

Fig. 8 Results when mean job size E[S] = 1. a E[T] versus k, b E[P] versus k

M/M/k/setup has a much higher E[T], and only a slightly lower E[P]. In fact, when
k is low, E[P] for M/M/k/setup is higher than that of M/M/k. This is because of
the power penalty involved in the setup cost. Thus, M/M/k/setup is not a good pol-
icy for small job sizes. The M/M/k/setup/sleep (crosses) has lower E[T] and lower

123

personal copy

Queueing Syst

Fig. 9 Results when mean job size E[S] = 10. a E[T] versus k, b E[P] versus k

Fig. 10 Results when mean job size E[S] = 100. a E[T] versus k, b E[P] versus k

E[P] than the M/M/k/setup. Thus, using sleep modes improves the M/M/k/set-
up policy. Finally, we see that M/M/k/setup/delayedoff (diamonds) has E[T] vir-
tually as low as that of M/M/k, and has the lowest power consumption among all
other policies. Thus, M/M/k/setup/delayedoff is superior to all the other policies
for small job sizes. The reason for lower E[P] under M/M/k/setup/delayedoff is
because of twait which avoids unnecessary setups (and the associated power penal-
ties).
Figures 9 and 10 show our results for the case of E[S] = 10 s and E[S] = 100 s

respectively.
The E[T] results for these job sizes are qualitatively similar to the results for

E[S] = 1 s. The percentage difference between the E[T] under different policies
goes down as E[S] goes up. This is because the setup time is not changing as E[S]
goes up, and thus, the queueing delay caused by setup times is not as severe for large
E[S]. Note that the E[T] under M/M/k/setup/delayedoff actually goes up as E[S]
goes up. This is a side effect of the optimal twait setting which trades off lower E[P]
at the expense of a slightly higher E[T] for bigger job sizes.
The E[P] results for these job sizes indicate that E[P] under M/M/k/setup and

M/M/k/setup/sleep decreases with an increase in job size, and approaches the E[P] of
M/M/k/setup/delayedoff. This is because an increase in E[S] necessitates an increase
in the inter-arrival time, given fixed load, ρ. Thus, servers now spend more time in
the off or sleep states, and consequently, consume less power. In fact, the M/M/k/set-

123

Author's personal copy

Queueing Syst

Fig. 11 V ar(T) versus k when mean job size E[S] = 1 s

up/sleep has lower E[P] as compared to M/M/k/setup/delayedoff for the case of
E[S] = 100 s. We take a closer look at these two policies in Sect. 11.3. Note that
under M/M/k, E[P] = k · ρ · Ppeak + k · (1 − ρ) · Pidle, which is linear in k and
independent of E[S].
The E[T] results for these job sizes are qualitatively similar to the results for

E[S] = 1 s. The percentage difference between the E[T] under different policies goes
down as E[S] goes up. This is because the setup time is not changing as E[S] goes up,
and thus, the queueing delay caused by setup times is not as severe for large E[S]. Note
that the E[T] under M/M/k/setup/delayedoff actually goes up as E[S] goes up. This is
a side effect of the optimal twait setting which trades off lower E[P] at the expense of a
slightly higher E[T] for bigger job sizes. As mentioned in Sect. 7, our renewal-based
approach also provides closed-form solutions for higher moments of response time
and power. Figure 11 shows our results for V ar(T), the variability in response time,
for the case of E[S] = 1s. We see that V ar(T) follows the same trends as E[T] in
Fig. 8a. Note that V ar(T) is close to 1 for M/M/k and M/M/k/setup/delayedoff. Also,
V ar(T) converges to 1 for all policies for high k. This is because V ar(T) converges
to V ar(S) (no queueing delay) in these cases, and since S is exponentially distributed
with mean E[S] = 1 s, we get V ar(T)→ V ar(S) = 1s2.
All the results above assumed exponential setup times and exponential delay times.

However, in real-world scenarios, these times would be deterministic. We use simu-
lations to find E[T] and E[P] under deterministic setup times for all the above cases.
We find that the relative ordering of the policies and the trends in E[T] and E[P] do
not change significantly, despite the fact that all values become slightly higher due to
the setup rates no longer being additive.

11.3 A closer look at M/M/k/setup/delayedoff versus M/M/k/setup/sleep

Figure 12 shows the tradeoff between E[P] and E[T] forM/M/k/setup/delayedoff and
M/M/k/setup/sleep for E[S] = 100 s. These plots are identical to Fig. 7b, d. We see
that no policy dominates the other. If we are more concerned about reducing E[P],
M/M/k/setup/sleep is the better choice. However, if we are more concerned about
reducing E[T], M/M/k/setup/delayedoff is the better choice. Interestingly, by taking
a probabilistic mixture of the two policies, we can find additional policies that are
superior to the M/M/k/setup/delayedoff and the M/M/k/setup/sleep. The probabilistic

123

Author's personal copy

Queueing Syst

Fig. 12 E[P] versus E[T] for various values of twait and s for mean job size E[S] = 100 s

mixture can be obtained by taking the convex hull of the two policies, as shown by
the dashed line in Fig. 12. This suggests the potential for a policy that combines
M/M/k/setup/sleep with delayedoff.

12 Conclusion

In this paper we develop a new way of combining renewal reward theory and recur-
sive techniques that allows us to solve the M/M/k/setup class of Markov chains. Our
renewal-based approach is very intuitive, easy to apply, and can be used to analyze
many important Markov chains that have a repeating structure. Our approach com-
bines renewal reward theorywith the development of recursion lemmas for theMarkov
chain to yield exact, closed form results for metrics of interest such as the transform
of time in system and the transform of power consumed by the system. Our approach
reduces the solution of the M/M/k/setup chains to solving k quadratic equations and
a system of O(k2) linear equations. On an Intel Core i5-based processor machine we
found our renewal-based approach to be almost 5–10 times faster than the iterative
matrix-analytic-based methods, when using standard MATLAB implementations of
both methods.
While we have only considered theM/M/k/setup, the M/M/k/setup/delayedoff, and

the M/M/k/setup/sleep in this paper, we have also been able to use our renewal-based
approach for the derivation of exact, closed-form solutions for other importantMarkov
chains with a repeating structure such as (i) M/M/k/stag [10], wherein at most one
server can be in setup, (ii) M/M/k/setup/threshold, wherein the servers are turned on
and off based on some threshold for number of jobs in queue, (iii) M/M/k/disasters,
wherein the system can empty abruptly due to disasters, and (iv) M/E2/k, where the
job size distribution is Erlang-2. We have also been able to apply our renewal-based
approach to analyze otherMarkov chains such as (i)Mt /M/1, where the arrival process
is Poissonwith a time dependent parameter, (ii)M/H2/k, where the job size distribution
is a 2-phase hyperexponential, and (iii) Mx /M/k, where there is a Poisson batch arrival
process. In the above three cases, our approach reduces the analysis to solving a system
of polynomial equations with degree >2. In general, our renewal-based approach
should be able to reduce the analysis of any 2-dimensional Markov chain (with an
affine reward function), which is finite in one dimension and infinite (with repeating
structure) in the other, to solving a system of polynomial equations.

123

Author's personal copy

Queueing Syst

While not shown in this paper, it is possible to derive an explicit rate matrix for
the M/M/k/setup, which leads to closed-form expressions for the limiting probabili-
ties. While our renewal-based approach does not utilize the rate matrix in any way,
we believe that the set of Markov chains that can be solved in closed form via our
approach should have an explicit rate matrix. If this hypothesis is true, our renewal-
based approach can provide an alternative, intuitive technique for analyzing Markov
chains that are typically amenable to matrix-analytic methods. A formal investigation
into the connection between matrix analytic methods and our renewal-based approach
is left as future work.

Appendix 1: Recursion lemmas

Lemma 1 (Recursion lemma for mean time) For the M/M/k/setup, the mean time to
move one step left from state (i, j), T L

i, j , is the same for all j ≥ k.

Proof For any j ≥ k, observe that when moving one step left from any state (i, j), we
only visit states with level j or greater, until the final transition to level j − 1. Hence,
T L

i, j depends only on the structure of the “subchain” of the M/M/k/setup consisting
of levels { j, j + 1, . . .}, including transition rates to level j − 1. Now consider the
subchain for each j ≥ k; these subchains are isomorphic, by the fact that the chain
is repeating from level k onward. Hence, the time to move one step left is the same
regardless of the initial level j ≥ k.
�
Lemma 2 (Recursion lemma formean reward)For the M/M/k/setup, the mean reward
earned in moving one step left from state (i, j+1), RL

i, j+1, satisfies RL
i, j+1 = RL

i, j+T L
i, j

for all j ≥ k, where the reward tracks the number of jobs in the system.

Proof Consider the process of moving one step left from a given state (i, j) where
j ≥ k. At the same time, consider the same process where everything is shifted over
one level to the right, so that the initial state is (i, j + 1) At any point in time, the
number of jobs seen by the second process is exactly one greater than that seen by the
first process. Therefore, the total number of jobs accumulated (total reward) during
the second process is T L

i, j greater than that of the first process, since the duration of

both processes is T L
i, j by Lemma 1.
�

Lemma 3 (Recursion lemma for transform of reward) For the M/M/k/setup, ṘL
i, j+1 =

z · ṘL
i, j , for all j ≥ k, where Ṙ tracks the z-transform of the number of jobs in the

system.

Proof The proof is identical to that of Lemma 2, except that in any moment in time
the second process (starting in level (i, j + 1)) earns z times as much reward as the
first process (starting at (i, j)).
�
Lemma 4 (Recursion lemma for transform of power) For the M/M/k/setup, Ė L

i, j+1 =
Ė L

i, j = T L
i, j · zk·Ppeak , for all j ≥ k.

123

Author's personal copy

Queueing Syst

Proof When j ≥ k, all k servers are either on or in setup, putting power consumption
at k · Ppeak. So the transform of power usage is zk·Ppeak , yielding Ė L

i, j = T L
i, j · zk·Ppeak .

It then follows immediately from Lemma 1 that Ė L
i, j+1 = Ė L

i, j .
�
Lemma 5 (Recursion lemma for probability) For the M/M/k/setup, for each 0 ≤ d ≤
k and for each 0 ≤ i ≤ k, pL

i→d is the same for all j ≥ k.

Proof Recall that pL
i→d is the probability that, given that we start at depth i , we end

at depth d when moving one step to the left, except when j = k and d ∈ {k − 1, k};
in these cases we interpret pL

i→k (or pL
i→k−1) as the probabilities that we first moved

one step left by transitioning out of a state in depth k (or k − 1).
As with T L

i, j , pL
i→d depends only on the structure of the “subchain” consisting of

levels { j, j + 1, . . .}, including transition rates to level j − 1. Since for all j ≥ k the
resulting subchains are isomorphic, pL

i→d must be the same for all j ≥ k.
�

Appendix 2: Solution of the system of equations for M/M/k/setup

The steps below illustrate how to solve the system of equations forM/M/k/setup. All of
the operations in the steps below can be performed symbolically to obtain closed-form
results.

Solving for pL
i→d

The system of equations for pL
i→d consists of equation sets (28), (29) and (30). Equa-

tion (28) are k quadratic equations, each in one variable: pL
0→0, pL

1→1, . . . , pL
k−2→k−2,

pL
k−1→k−1. Thus, we can solve each equation easily using the quadratic formula. It can
be easily shown that among the two roots of each equation, the greater root exceeds 1,
and is thus disregarded. The lesser root can be shown to lie in the interval [0, 1), mak-
ing it the unique solution of interest to the quadratic equation. Note that pL

0→0 = 0,
as expected (we cannot move to the left when we have no servers on).
The set of equations (29) is a collection of O(k2) equations involving linear terms

and products of two unlike variables. However, the structure of this systemof equations
reduces solving the system to solving a set of linear equations via back substitution.
Consider solving this set of equations for the unknown values of pL

i→d in this order:

pL
k−1→k−1, pL

k−2→k−2, pL
k−2→k−1, . . . , pL

0→1 pL
0→2, . . . , pL

0→k−1

That is, solving from greatest (k − 1) to least (0) “original depth,” but within each
original depth, solving from least to greatest “target depth.” Solving in this order, each
equation we solve will only have one unknown, as all other variables will already
have been solved for in an earlier step (including the pL

i→i from Eq. (28)), so these
variables can be viewed as coefficients and constant terms. Once we have solved
Eq. (29), we can easily solve Eq. (30), yielding pL

0→k, pL
1→k, . . . , pL

k−1→k , by taking
complements. It follows that all pL

i→d can be solved in closed forms that are, at worst,
linear combinations of radicals (i.e., square roots).

123

Author's personal copy

Queueing Syst

Solving for ṘL
i,k

The system of equations for ṘL
i,k consists of Eqs. (31) and (32), and (33). This system

is a collection of (k + 1) linear equations with (k + 1) unknowns. Although we could
solve this systemusing standard linear algebraic techniques, the structure of this system
suggests an even simpler approach using back substitution. Solving for each ṘL

i,k only

requires knowing the ṘL
i,� such that � ∈ {i + 1, . . . , k}. Equation (33) readily gives us

ṘL
k,k . Thus, we can now solve for ṘL

k−1,k , then ṘL
k−2,k , and so on. In this way, each

ṘL
i,k is found by solving a linear equation for one unknown variable.

Solving for ṘH
i, j

The system of equations for ṘH
i, j consists of Eqs. (34), (35), (36) and (37), and (38).

This system is a collection of O(k2) dependent linear equations with just as many
unknowns. Unlike the earlier systems of equations, there is no apparent structure we
can exploit, so the system can be solved via standard linear algebraic techniques such
as (symbolic) matrix inversion.

References

1. Adan, I., Resing, J.: A class of Markov processes on a semi-infinite strip. Technical Report 99–03,
Eindhoven University of Technology, Department of Mathematics and Computing Sciences, (1999)

2. Adan, I., van der Wal, J.: Combining make to order and make to stock. OR Spektrum 20, 73–81 (1998)
3. Artalejo, J.R., Economou, A., Lopez-Herrero, M.J.: Analysis of a multiserver queue with setup times.
Queueing Syst. Theory Appl. 51(1–2), 53–76 (2005)

4. Barroso, L.A., Hölzle, U.: The case for energy-proportional computing. IEEE Comput. 40(12), 33–37
(2007)

5. Castellanos,M., Casati, F., Shan,M.-C., Dayal, U.: iBOM:Aplatform for intelligent business operation
management. Proceedings of the 21st International Conference on Data Engineering. ICDE ’05, pp.
1084–1095. Tokyo, Japan (2005)

6. DeCandia, G., Hastorun,D., Jampani,M., Kakulapati, G., Lakshman,A., Pilchin, A., Sivasubramanian,
S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly available key-value store. Proceedings of
twenty-first ACM SIGOPS Symposium on Operating Systems Principles. SOSP ’07, pp. 205–220.
Stevenson, WA (2007)

7. Gandhi, A., Doroudi, S., Harchol-Balter, M., Scheller-Wolf, A.: Exact analysis of the M/M/k/setup
class of Markov chains via recursive renewal reward. Technical Report CMU-CS-13-105, Carnegie
Mellon University, (2013)

8. Gandhi, A., Gupta, V., Harchol-Balter, M., Kozuch, M.: Optimality analysis of energy-performance
trade-off for server farm management. Perform. Eval. 67, 1155–1171 (2010)

9. Gandhi, A., Harchol-Balter, M.: How data center size impacts the effectiveness of dynamic power
management. 49th Annual Allerton Conference on Communication, Control, and Computing, (2011)

10. Gandhi, A., Harchol-Balter, M., Adan, I.: Server farms with setup costs. Perform. Eval. 67, 1123–1138
(2010)

11. Gandhi, A., Harchol-Balter, M., Kozuch, M.: Are sleep states effective in data centers? 3rd IEEE
International Green Computing Conference, (2012)

12. Horvath, T., Skadron, K.: Multi-mode energy management for multi-tier server clusters. Proceedings
of the 17th International Conference on Parallel Architectures and Compilation Techniques. PACT
’08, pp. 270–279. Canada, Toronto (2008)

13. Keilson, J., Servi, L.: A distributional form of little’s law. Oper. Res. Lett. 7(5), 223–227 (1988)

123

Author's personal copy

Queueing Syst

14. Kim, J.,Rosing,T.S.: Power-aware resourcemanagement techniques for low-power embedded systems.
In: Son, S.H., Lee, I., Leung, J.Y.-T. (eds.) Handbook of Real-Time and Embedded Systems. Taylor-
Francis Group LLC, Boca Raton (2006)

15. Kleinrock, L.: Queueing Systems, Volume I: Theory. Wiley, New York (1975)
16. Krioukov, A., Mohan, P., Alspaugh, S., Keys, L., Culler, D., Katz, R.: NapSAC: design and implemen-

tation of a power-proportional web cluster. Proceedings of the First ACM SIGCOMM Workshop on
Green Networking. Green Networking ’10, pp. 15–22. New Delhi, India (2010)

17. Latouche, G., Ramaswami, V.: Introduction toMatrix AnalyticMethods in StochasticModeling. ASA-
SIAM, Philadelphia (1999)

18. Levy, Y., Yechiali, U.: An M/M/s queue with servers’ vacations. INFOR 14, 153–163 (1976)
19. Meisner, D., Gold, B.T., Wenisch, T.F.: PowerNap: eliminating server idle power. In Proceeding of the

14th international conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’09, pages 205–216, Washington, DC, (2009)

20. Mitrani, I.: Managing performance and power consumption in a server farm. Ann. Oper. Res. 202(1),
121–134 (2013)

21. Qin, W., Wang, Q.: Modeling and control design for performance management of web servers via an
IPV approach. IEEE Trans. Control Syst. Technol. 15(2), 259–275 (2007)

22. Riska, A., Smirni, E.: M/G/1-type Markov Processes: A Tutorial. Performance Evaluation of Complex
Systems: Techniques and Tools, pp. 36–63. Springer, New York (2002)

23. Tian, N., Li, Q.-L., Gao, J.: Conditional stochastic decompositions in the M/M/c queue with server
vacations. Stoch. Models 15(2), 367–377 (1999)

24. Van Houdt, B., van Leeuwaarden, J.: Triangular M/G/1-type and tree-like quasi-birth-death Markov
chains. INFORMS J. Comput. 23(1), 165–171 (2011)

25. Van Leeuwaarden, J.,Winands, E.: Quasi-birth-and-death processes with an explicit rate matrix. Stoch.
Models 22(1), 77–98 (2006)

26. Welch, P.: On a generalized M/G/1 queueing process in which the first customer of each busy period
receives exceptional service. Oper. Res. 12, 736–752 (1964)

27. Xu, X., Tian, N.: The M/M/c queue with (e, d) setup time. J. Syst. Sci. Complex. 21, 446–455 (2008)
28. Zhang, Z.G., Tian, N.: Analysis on queueing systems with synchronous vacations of partial servers.

Perform. Eval. 52(4), 269–282 (2003)

123

Author's personal copy

