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ABSTRACT
Chronics are recurrent problems that fly under the radar of
operations teams because they do not perturb the system
enough to set off alarms or violate service-level objectives.
The discovery and diagnosis of never-before seen chronics
poses new challenges as they are not detected by traditional
threshold-based techniques, and many chronics can be present
in a system at once, all starting and ending at different times.
In this paper, we describe our experiences diagnosing chron-
ics using server logs on a large telecommunications service.
Our technique uses a scalable Bayesian distribution learner
coupled with an information theoretic measure of distance
(KL divergence), to identify the attributes that best distin-
guish failed calls from successful calls. Our preliminary re-
sults demonstrate the usefulness of our technique by provid-
ing examples of actual instances where we helped operators
discover and diagnose chronics.

1. INTRODUCTION
Chronics are the low-grade fevers of large distributed

services that support millions of users. These problems
fly under the radar of operations teams because they
are not big enough to set off alarm thresholds, yet they
result in significant degradation in user satisfaction if
left unresolved over long periods of time. Chronics can
be recurrent, occurring repeatedly but unpredictably for
short durations of time, or they may persist, affecting
small subsets of users all the time.

The discovery and diagnosis of never-before seen chron-
ics is a task that poses new challenges compared to the
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diagnosis of sudden system outages. Threshold-based
detection techniques [4, 6, 13] do not work well because
lowering the thresholds to detect chronics would in-
crease the number of false positives. In addition, they
pose challenges to other techniques too. Chronics that
occur over short periods of time often go away before
diagnosis can be performed, while those that persist
for long periods of time can get absorbed into a sys-
tem’s definition of “normal”, thus creating problems for
change-point detection methods [1] or those that rely
on historical models [9]. Unlike major outages which
are rare and often have a single cause, lots of chron-
ics can be present in a system at once, all starting and
ending at different times. Furthermore, they may also
be hidden by larger, more pressing problems. These
characteristics make it difficult to isolate and diagnose
individual chronic problems or isolate periods of bad
system behavior to narrow regions of time that can be
analyzed in more detail [17].

In addition to these unique challenges, the traditional
problems of large systems diagnosis remain for chronics
as well. Service platforms often consist of hundreds (or
more) of network and server elements of different types,
from different vendors, often producing high volumes of
partially-structured logs with different formats. Detect-
ing problems based on low-level events such as resource
utilization indicators or network packet loss does not
translate directly to user-visible symptoms resulting in
false positives, while waiting for customer complaints
to identify user-problems is often too late. Finally, a
variety of different underlying problems may cause user
requests to fail—failures may be caused by the service
elements (e.g., due to upgrades or misconfiguration),
the underlying network, customer issues (e.g., miscon-
figuration or misuse), or combinations of the above.

In this paper, we report on our experiences address-
ing these issues to detect chronics using server logs on a
large production telecommunications service that han-
dles tens of millions of calls per day. Specifically, we
analyze call detail record (CDR) logs collected from a



part of a major US ISP’s Voice over IP telephone net-
work over a period of several months. VoIP is an ap-
plication with rapidly increasing importance. The user
base of VoIP will increase to hundreds of millions of
users [18] by replacing traditional telephony in the of-
ferings of many wireline ISPs (e.g., [7, 15]), and in up-
coming 4G cellular standards such as LTE that require
the use of VoIP for all cellular telephony [18]. However,
we will argue that the problems we address, and our
solutions, are not limited to VoIP; they are likely to be
applicable to many other large systems such as Internet
services that are used by millions of users as well.

After discussing the suitability and limitations of ex-
isting diagnosis literature to address the above chal-
lenges, we propose the outline of a new statistical ap-
proach for chronic discovery and diagnosis that is scal-
able, yet does not use historical data for learning the
“normal” behavior of the system. Therefore, it is ideal
for discovering unexpected problems that have never
been seen before, and it can also identify problems that
have persisted in the background for a long time. It is
designed to isolate independent problems that may be
ongoing at the same time, and even on common network
elements. Finally, with a little domain-specific effort, it
can work with semi-structured system logs from differ-
ent vendors with different structures and semantics.

The methodology we propose is simple: a) we start
from the top and label every user-interaction with the
system as normal or anomalous using simple application
heuristics, b) using application-specific keys, we then
correlate as much system log data to each labeled in-
teraction as is possible, and c) we finally run a scalable
Bayesian distribution learner coupled with an informa-
tion theoretic measure of distance (KL divergence [11]),
to identify groups of call attributes in the correlated
dataset that best distinguish failed user interactions
from successful ones. Finally, we show that the tech-
nique is powerful—preliminary applications of the tech-
nique to our target VoIP service have helped discover a
number of actual chronics.

2. THE DATASET AND CHALLENGES
We investigate chronics discovery for a part of the

VoIP operations of a major US-based ISP. However, our
findings may also apply to other large distributed sys-
tems, (e.g., e-commerce, web-search, social networks)
that serve users via independent interactions such as
web requests. The portion of the ISP’s VoIP network
that we analyzed handles tens of millions of calls each
day, contains several hundred network elements, and
is layered on a large IP backbone. The network of-
fers a portfolio of voice services including individual ac-
counts, teleconferencing, self-managed solutions where
customers manage their own premise equipment (PBXs),
and wholesale customers who buy network minutes in

Table 1: A Generic Call Detail Record (CDR).
Attribute Description
Timestamps Call start and end times
Service Type of service
Caller/callee info Phone number and IP address
Network Element Name of network element, e.g., gateway X
Defect code Problem encountered, e.g., server timeout

bulk and resell them. Each service has different call
path patterns, with calls going through combinations
of network elements such as VoIP gateways (IPBEs),
traditional phone gateways (GSXs), accounting servers,
application servers (AS), voicemail servers, and policy
servers (PSX). Many of these are built by different ven-
dors and have different log file formats.

To satisfy the high availability requirements of the
system, there are real-time operations teams that mon-
itor both low-level alarms derived from the equipment
(server and network errors, CPU/memory/network uti-
lization counters, etc.), as well as end-to-end indica-
tors such as customer complaints and output from auto-
mated test call systems. Codebook-based systems [19]
that are driven by signatures of known problems are
used for identifying related alarms and for diagnosis.
Major outages often result in immediate impact on suc-
cessful call volumes, alarms from many sources, and are
usually detected and resolved quickly.

Despite such robust operations support, the system
always has a number of call defects occurring at any
time of the day in the form of “background noise”. The
causes are many, ranging from network elements that
need to be reset or rebooted, to protocol compatibility
issues for corner cases, to configuration problems for
individual customers. Measured in defects per million
(DPM), they represent only a small fraction of the calls
at any given time, but left unchecked, they can add up
quickly over weeks and months. A separate chronics
team troubleshoots these defects, but diagnosis is still
a largely manual process. We seek to provide tools that
can help such chronics teams quickly discover low-grade
problems that are hidden in the background noise.

2.1 Call Detail Logs
We examined logs from the VoIP network over a pe-

riod of several months. An example is shown below.
These include call detail record (CDR) logs that are
generated locally by many network elements for each
call that passes through them. The logs often contain
hundreds of fields that specify many details of the call
such as the caller and callee information, local resources
and circuits used by the call, call start and end time,
and error codes, if any. The structure and semantics of
these records are vendor-specific. However, many logs
include several common fields, some of which are shown
in Table 1. However, even the fields that are common
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Figure 1: System usage follows cyclical patterns.
Call counts were obscured to preserve privacy.

may not always match - e.g., some servers record all the
digits in the calling and called phone numbers, while
others omit the last four digits. These logs tend to be
large—the average size of the raw CDR logs is 30GB/-
day. Even after significant consolidation to eliminate
irrelevant data fields, the average size is 2.4GB/day,
and each log contains between 1500-3000 unique call
attributes pertinent to diagnosis.

# CDR Log sn ippet
20100901064914 ,STOP, at4ga01gh , phnum1 , phnum2 ,
PSTN−TO−IP , ipaddr1 :32620/ ipaddr2 :25378 ,
CCE PHILAPASLCA3 TG,
otg=0001ATLNGANW05T−T0012 ,
VENDOR X CCE, Answered , Success , ph4pa0102sce

2.2 Challenges in Diagnosing Chronics
Chronics occur for a variety of reasons. For example,

customer misconfiguration affecting some, but not all,
calls made by the customer. These failures persist until
the customer fixes their configuration. Increases in sys-
tem workload can also cause regularly occurring chron-
ics (e.g., peak business hours). Such problems may be
due to under-provisioning or customer exceeding their
resource caps (e.g., number of concurrent calls). Equip-
ment failures such as a bad row of memory can also
cause random call failures, but at a rate lower than
would trigger an alarm. Operators could ignore these
problems if they were one-off incidents. However, the
recurrent nature of these problems negatively impacts
customer satisfaction over time. Diagnosing chronics
poses the following challenges.

Chronics fly under the radar.
Chronics typically occur sporadically, or affect a small

subset customers, and thus do not trigger any threshold-
based alarms. This is because setting threshold con-
ditions is notoriously difficult. As shown in Figure 1,
large systems often have cyclical fluctuations in volume
over the course of a day, days of the week, and even
month of the year. This makes it difficult to set static
thresholds for what is normal. Techniques to learn his-
torical trends and thus change thresholds dynamically
exist, but chronics often live in the small gaps between
predicted trends and actual values.
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1. Problem with network element

2. Problem with single customer

3. Failures on specific trunk route

4. Problem with a different customer

Total Failures

Figure 2: Defects associated with a network el-
ement may be due to many different causes.

Multiple independent problems.
Because chronics often persist for long periods of time

before they are discovered, there are usually many of
them ongoing at the same time. For example, Figure 2
shows an actual example where the total number of
defective calls passing through a network element (top
graph) over a period of 3 days were in fact due to at-
least four unique problems - one related to a network
element, two related to two different customers (prob-
lems 2 and 4), and one a capacity problem with a trunk
route (problem 3). The y-axis shows the number of
failed calls due to each problem on a log scale as a func-
tion of time. The most dominant problem (problem 1)
drives the shape of the overall failure graph, and hides
the other problems.

Persistent Problems.
Some problems, such as problem 4 from Figure 2

occur only for short durations of time, and could be
discovered by change detection algorithms. However,
problems such as problem 1 persisted for long peri-
ods of time, thus making it difficult to detect them via
change points.

Complex triggers.
Chronics often involve only a small subset of user

interactions because they are triggered by some unfore-
seen corner case requiring atypical conditions. An inci-
dent from the VoIP network illustrates this issue. Cus-
tomers of a given service experienced difficulties making
and receiving calls following a planned maintenance in-
volving a configuration change to a server. The issue
prevented customers whose phones used IP addresses



Table 2: Summary of Diagnosis Techniques
Technique (Canonical Example) End-to-end tracing

(Pinpoint [10])
Signature-based
(Cohen2005 [6])

Graph theoretic
(NetMedic [9])

Event correlation
(Giza [13])

Complex problems diagnosed
Propagating problems 3 3 3 3
Chronics 7 7 7 (partial)
Multiple independent problems 3 7 3 3
Complex triggers (partial) 3 7 3

instead of fully qualified domain names from registering
with the network. To effectively debug this problem,
operators needed to identify that the problem occurred
only for customers of the specific service when certain
types of phones were used with the misconfigured server.
Identifying the combination of factors necessary to trig-
ger the problem is challenging.

3. STATE-OF-THE-ART DIAGNOSIS
Over the past decade there have been significant ad-

vances in tools that exploit statistics and machine learn-
ing to diagnose problems in distributed systems. Table
2 highlights some influential diagnosis techniques. This
list is by no means exhaustive but we believe it captures
the trends in diagnosis for distributed systems. This
section discusses the contributions of these techniques,
and their shortcomings at diagnosing chronics.

3.1 End-to-end Tracing
Some diagnostic tools [3,5,10,17] analyze end-to-end

request traces and localize components highly corre-
lated with failed requests using data clustering [3, 17]
or decision trees [5, 10]. They detect problems that re-
sult in changes in the causal flow of requests [10, 17],
changes in request durations [17], or error codes [5].
These techniques have typically been used to diagnose
infrastructural problems, such as database faults and
software bugs (e.g infinite loops and exceptions) which
lead to a marked perturbation of a subset of requests.
In principle, techniques such as decision trees should
fare well at diagnosing both major outages and chron-
ics. However, decision trees did not fare well at diagnos-
ing chronics when we applied them to our dataset. We
hypothesize that the decision tree’s bias towards build-
ing short trees led to the pruning of relevant features
when diagnosing problems due to complex triggers. In
addition, the small number of calls affected by chron-
ics coupled with the presence of multiple independent
chronics might have been mistaken for noise.

3.2 Signature-based
Signature-based diagnosis tools [4, 6, 8] allow system

administrators to identify recurrent problems from a
database of known problems. Research has centered
on how to represent and retrieve signatures from the
problem database. These techniques use Service-Level

Objective (SLO) to identify periods of time where the
system was behaving abnormally, and apply machine
learning algorithms (e.g., tree-augmented naive bayes,
logistic regression) to determine which resource-usage
metrics are most correlated with the anomalous periods.
They generate signatures using centroids obtained by
clustering feature vectors based on the resource-usage
metrics correlated with the problems. These techniques
can diagnose problems due to complex triggers by lo-
calizing the problem to a small set of metrics. However,
they do not address multiple independent problems as
they assume that a single problem occurs at a given in-
stance of time. Chronic conditions might also go unde-
tected by the SLOs because they are not severe enough
to violate the thresholds.

3.3 Graph-theoretic
Graph-theoretic techiques analyze communication pat-

terns across processes to track the probability that er-
rors, or successes (e.g., probes) propagate through the
system. The models may also monitor violations in ex-
pected communication patterns. Graph-theoretic tech-
niques are useful for diagnosing problems whose mani-
festation propagates across distributed systems.

Rish et al. [16] propose an active probing approach
that drills down on the root-cause of the problem by
dynamically selecting the next probe to run based on
their current belief about the system state. Sherlock [2]
exploits models of node behavior, such as failover mech-
anisms, to infer the root-cause by computing the prob-
ability that errors propagate from a set of possible root-
cause nodes. NetMedic [9] uses a statistical approach
that does not require extensive domain knowledge to
diagnose propagating problems in enterprise systems.
NetMedic diagnoses problems by capturing dependen-
cies between components, and analyzing the joint be-
havior of these components in the past to estimate the
likelihood of them impacting one another in the present.

These techniques can be used to detect multiple in-
dependent problems—ranking them by likelihood of oc-
currence. However, these techniques do not address
problems due to complex triggers as they assume that
the root-cause of the problem stems from a single com-
ponenent. In addition, since chronics do not severely
perturb system performance they can be included in
the profiles of normal behavior learned from historical
data—causing chronics to go undetected.



3.4 Event correlation
Correlation can be used to automatically discover

causal relationships between events in distributed sys-
tems. Oliner et al. [14] uses cross correlation to discover
causal relationships between anomaly signals across com-
ponents. The anomaly signals represent the changes in
the behavior of components over time in terms of re-
source usage, message timing or semantics over time.
Giza [13] exploits knowledge of the system’s topology
to identify spatial correlations between events, e.g, cus-
tomers in Texas are experiencing poor video quality.
Next, Giza uses cross correlation to discover causal re-
lationships between symptoms (e.g, poor video qual-
ity) and diagnostic events (e.g, a network link is down).
Cross correlation facilitates automatic rule discovery,
and diagnosis of problems due to complex triggers. These
techniques also support diagnosis of multiple indepen-
dent problems. Giza’s spatial aggregation of events can
help detect chronics. However, their technique relies on
correlating these chronic symptoms to diagnostic events
within the service provider’s network, e.g., alarms—
thus they can fail to localize the root-cause of the de-
tected chronics.

4. PROPOSED APPROACH
Our overall approach consists of labeling user inter-

actions such as phone call attempts as successful or
anomalous, associating additional system-level informa-
tion with these interactions using system logs, and then
using a scalable ranking function to identify a group
of attributes that best discriminates between the suc-
cess and failure labels as our first chronic diagnosis. We
then remove the interactions matching this diagnosis
from the dataset and repeat the process to identify other
chronic problems until a bulk of the anomalous inter-
actions have been explained. The approach requires
little domain knowledge, and does not rely on models
of system behavior or historical data to localize prob-
lems. Furthermore, it is capable of localizing unantici-
pated problems that have never been seen before, e.g.,
misconfiguration, failed upgrades, system overload, and
unanticipated interactions due to incompatible software
versions. We describe each step of the approach in more
detail as follows.

4.1 Extract Call Labels and Attributes
We start from user-visible indications of failure in each
individual user’s interactions with the system, i.e., at-
tempts to make a phone call. Labeling of user interac-
tions into success and failure interactions may or may
not be easy depending on what information is available.
For example, if logs at the user end device are avail-
able, identifying failed phone calls is easy. However, if
only logs from network elements are available as in our
case, domain-specific heuristics will often be required.

For phone calls, a user redialing the same number im-
mediately after disconnection, zero talk time, or server
reported error code can be used as the failure indica-
tor. In other systems, similar heuristics could work too
- e.g., a user repeatedly refreshing a web page, or get-
ting a HTTP error in some part of the page. Since
these labels are used for subsequent statistical analysis,
occasional mislabeling can be tolerated.

We then correlate the lower-level system log data ex-
tracted from the raw CDRs with these user-level events
(phone calls) to construct a “master record”. The log
data must have some common keys such as time, phone
numbers, and IP addresses that can be used to corre-
late the data with the user-level event. However, the
matches need not be exact, and domain-specific match-
ing rules can be used. E.g., entries may belong to
the same call if the sender and receiver phone numbers
match in all available digits and timestamps are within
a small window of each other. Besides these keys, the
remainder of each log entry is not required to have any
special semantic meaning. We can treat it simply as
a bag of words. For our VoIP dataset, the end result
is a list of “master CDRs”, one for each phone call or
call attempt, and each labeled as a success or failure as
shown in Figure 3.

Each master CDR consists of number of attributes in-
cluding the calling and called phone numbers, call time
and duration, a number of element names and IP ad-
dresses for elements that process the call, any defect
and success codes generated by the element, the trunk
lines used, and other fields present in the CDRs. Do-
main knowledge can be used to choose which attributes
to include from the original raw logs.

4.2 Ranking Groups of Attributes
Given the set of master records, we then rank groups

of attributes using a scoring function that quantifies
the ability of the group to discriminate between suc-
cessful calls and failed calls. To do so, we use an itera-
tive Bayesian approach to learn a simple Bernoulli (i.e.,
“coin toss”) model of successes and failures. The idea
is to model an attribute a as occurring in a call with
a fixed, but unknown probability pa. This attribute
occurrence probability is paf for failed calls, and pas for
successful calls. The model estimates these unknown
probabilities using the master CDRs. However, rather
than learning a single value, we can estimate the en-
tire probability distribution of these unknown attribute
occurrence probabilities, i.e., F a

f (x) = P [paf ≤ x], and
F a
s (x) = P [pas ≤ x]. We start with an initial estimate

for F a
f and F a

s , and Bayes rule is used to update this
estimate as each new call in the dataset is processed, de-
pending on whether it is a successful and failed call, and
whether it contains the attribute a or not. Once these
distributions are learned, the score is simply the KL di-
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Figure 3: An overview of steps used by our top-down, statistical diagnosis algorithm.

vergence [11], a standard information theoretic metric
of the “difference” between two distributions, computed
between these success and failure attribute occurrence
probability distributions.

Figure 3 shows how the scoring works in terms of
the density functions for the success and failure at-
tribute occurrence probability distributions. Intuitively,
it scores higher those attribute groups that are more
likely to occur in failed calls than in successful calls,
but it does so while taking into account the volume of
data observed. This allows us to increase confidence as
we observe more calls. For example, the score is higher
after observing an attribute in 50 out of 100 failed calls
as compared to observing it in 1 out of 2 failed calls,
even though both scenarios have the same underlying
probability pf of 0.5.

We can scalably compute the score for large numbers
of attribute groups and over large CDR volumes because
the KL divergence can be reduced to a closed form equa-
tion due to two textbook results. The first result is that
Beta distributions are conjugate priors for Bernoulli
models, i.e., if a Beta distribution Beta(x, y) is used
as an initial estimate for distribution F a

f (or F a
s ), and

the forward probability P [a appears in a failed call|F a
f ]

(and similarly for successful calls) is given by a Bernoulli
distribution, then the new estimate for F a

f after apply-
ing Bayes rule is also a Beta distribution Beta(x+a, y+
b), where a and b are the number of calls with and with-
out attribute a, respectively. The second result is that
the KL divergence between two Beta distributed ran-
dom variables, X ∼ Beta(a, b) and Y ∼ Beta(c, d) is
given by the Equation

KL(Y ||X) = ln
B(a, b)

B(c, d)
− (a− c)ψ(c)− (b− d)ψ(d)

+(a− c+ b− d)ψ(c+ d) (1)

where B is the Beta function and ψ is the digamma
function. Therefore, if one starts with the initial as-
sumption that the failure and successful call attribute
occurrence probabilities pf and ps are uniformly dis-
tributed (which is a special case of the Beta distri-
bution), then setting a/b = 1+#successful calls with-
/without attribute a, and c/d = 1+#failed calls with-
/without attribute a in Equation 1 yields the desired

score in Equation 2. A similar observation is used to
compute KL divergences between two Bernoulli models
in [12].

score = KL(p(Attribute/Failure) ||
p(Attribute/Success)) (2)

We diagnose problems involving multiple attributes
by computing the score for groups of attributes. At-
tribute groups can be produced systematically, by using
an inverted index to search for attribute groups having a
large number of successes and failures, they can be pro-
duced by random sampling, or they can be produced
by using domain-specific heuristics. Currently, we use
a inverted index to produce attribute combinations sys-
tematically.

After picking the group with the highest score as the
first problem to be discovered, we then remove all calls
(both success and failures) that match this attribute
combination from the dataset, and then repeat the pro-
cess. Doing so removes the impact of the first diagnosed
problem and allows us to ask what explains the remain-
ing failures. In this manner, we can identify separate
independent failure causes.

4.3 Preliminary Successes
Application of our approach to VoIP data logs has

led to very promising results. We analyze 25 million
records in 15 minutes (i.e, 7 minutes to load the data
+ 8 minutes of diagnosis time) on a 8-core Xeon HT
(@2.4GHz) with 24GB of memory. We have been able
to help the chronics team quickly identify several new
problems. We list a few such instances below.

Incident 1. A repeating increase in the number of de-
fects during night hours was observed associated with
a given defect code illustrated in Figure 4. Our anal-
ysis identified two different (business) customers as be-
ing associated with the bulk of the defects. While these
customers accounted for large share of total defects, the
defect rate observed by the customers were a fraction
of one percent. The operations team determined that
these two customers were attempting to send faxes over-
seas using unsupported codecs during US night time.



Incident 1: Persistent problem, complex trigger
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Figure 4: Multiple chronic problems exist at a
production system.

Shortly after the date the customers were notified of
the problem, the daily defect count associated with this
defect code decreased by 56%.

Incident 2. Our analysis identified an independent prob-
lem with a specific network element that occurred con-
currently with incident 1 (see Figure 4), and accounted
for over 50% of the remaining defects when failures due
to Incident 1 were excluded. Again, overall only a frac-
tion of one percent of the calls passing through this ele-
ment were failing making the problem harder to identify.
After the operations team reset the element, the total
number of daily defects associated with this defect code
was reduced by 76%, and this element was no longer
implicated by our analysis.

Incident 3. An increase in failure rate during business
hours was observed for a single defect code (see Figure
5). Our analysis identified a trunk group as being asso-
ciated with up to 80% of these defects. At peak, 2-3%
of the calls passing this trunk group would fail. Anal-
ysis by the operations team revealed two blocked CICs
(Circuit Identification Codes) on the trunk group and
as a result the problem would only affect calls assigned
to these blocked CICs (in a round robin manner). After
those CICs were unblocked, the total defects associated
with this code were reduced by 80%.

4.4 Why does it work?
A number of the characteristics of our approach al-

lows it to deal well with the challenges introduced by
chronic defects.

Incident 3: Persistent problem at trunk group
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Figure 5: Chronic problem affects 2-3% of calls
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1. Separation of concurrent root causes. Our iterative
analysis allows us to separate and localize the differ-
ent causes of many concurrent chronics that persist at
any given time, even if they share attributes (e.g., pass
through the same network element). By repeatedly fil-
tering out calls that match dominant problems as they
are detected, we expose increasingly smaller problems
that may earlier have been hidden in the noise.

2. Identification of novel problems. An undiagnosed
chronic problem is often novel, i.e., something that op-
erators have not seen before. For example, it may in-
volve a new network element, or a new customer (with
potentially novel configuration issues). Since we do not
rely on models learned from “normal” operation or sig-
natures of known defects, our approach can be used for
problems that have never been seen before.

3. Identification of low-grade problems. Threshold-
based approaches often miss chronics because of their
low numbers. We forego thresholds by using compar-
isons between successful and failed calls to identify at-
tributes discriminative of failures. The Bayesian infer-
ence we use can update the success and failure distribu-
tions with very few calls. Therefore, our approach can
detect problems with very small numbers of failures.

4. Identification of persistent problems. In some cases,
chronic problems cause failed user requests consistently
over time or consistently with the workload in the sys-
tem. Any approach that attempts to identify differences
from “normal” behavior to identify sudden changes or
spikes will fail to detect them (today is no different from
yesterday), but since our approach does not restrict us
to time as the only discriminative element, it is able to
diagnose such problems.

5. Identification of complex triggers. Because our ap-
proach evaluates many groups of attributes against the
scoring function, it can identify problems that occur
only when multiple conditions (encoded by attributes)
are satisfied at once.

4.5 Next Steps
Our approach requires traces that label every user-



interaction with the system as successful or anomalous.
The focus of our approach is not anomaly-detection
but rather localizing the root-cause of problems once
anomalies are identified. At present, our approach as-
sumes the call attributes are binary, and does not cater
for real-valued attributes such as CPU and memory-
usage. We have observed false-positives when the un-
derlying root-cause is not in the call logs, e.g., router
failures. In these instances, we implicate network el-
ements adjacent to the faulty router. We are extend-
ing our approach to incorporate additional data sources
such as router logs, and to cope with real-valued data.

5. CONCLUSION
This paper discusses the challenges associated with dis-
covering and diagnosing chronics, i.e., recurrent prob-
lems that fly under the radar and do not trigger alarm
thresholds. We present a new statistical approach for
the diagnosis of never-before seen chronics that does
not rely on models of system behavior, or historical
data to localize problems. Our approach uses a scalable
Bayesian distribution learner coupled with an informa-
tion theoretic measure of distance, to identify the sets of
attributes that best distinguish failed requests from suc-
cessful requests. We present preliminary results which
demonstrate the usefulness of our approach for diagnos-
ing actual chronics in a large VoIP system. Despite our
focus on VoIP systems, we believe that our findings can
be applied to other large-scale distributed systems that
log the outcomes of individual user transactions.
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