
Towards Fingerpointing in the Emulab Dynamic Distributed System ∗

Michael P. Kasick, Priya Narasimhan
Electrical & Computer Engineering Department

Carnegie Mellon University

Kevin Atkinson, Jay Lepreau
School of Computing
University of Utah

Abstract

In the large-scale Emulab distributed system, the many
failure reports make skilled operator time a scarce and
costly resource, as shown by statistics on failure fre-
quency and root cause. We describe the lessons learned
with error reporting in Emulab, along with the design,
initial implementation, and results of a new local error-
analysis approach that is running in production. Through
structured error reporting, association of context with
each error-type, and propagation of both error-type and
context, our new local analysis locates the most promi-
nent failure at the procedure, script, or session level.
Evaluation of this local analysis for a targeted set of
common Emulab failures suggests that this approach is
generally accurate and will facilitate global fingerpoint-
ing, which will aim for reliable suggestions as to the
root-cause of the failure at the system level.

1 Introduction
When building a real-life distributed system, the imme-
diate goals tend to center on creating a working system.
Not only is proper error-reporting tangential to devel-
oping the core system, but frequently system designers
do not know all of the possible errors, which ones will
be frequent, or how to categorize them. As a result,
many distributed systems are built with inadequate error-
reporting mechanisms that unduly burden system opera-
tors. This can become particularly taxing in large-scale
distributed systems, where component and communica-
tion failures can be the rule, not the exception.

As an example, operators of the Emulab network
emulation testbed [7] at Utah received on average 82
machine-generated failure emails per day in April, 2006.
Of these, a minority is uniquely indicative of infrastruc-
ture failures and, thus, is meaningful to operators. A sec-
ond portion consists of user errors and diagnostic mes-
sages that Emulab operators use to help users proactively
with problems and to improve the testbed infrastructure
as a whole. However, the majority of failure emails
redundantly confirm existing testbed problems or re-
source issues, and, thus, distract the operators’ attention.

∗This material is based on research sponsored in part by the Na-
tional Science Foundation, via CAREER grant CCR-0238381 and
grant CNS-0326453.

The amount of human time and skill required to diag-
nose problems hinders Emulab’s scalability, usefulness,
and acceptability to other organizations that run Emulab
testbeds. For such complex systems, one must provide
an automated means for fingerpointing, i.e., diagnosing
problems and tracing failures to their root-causes.

As with most large-scale distributed systems, Emulab
exhibits complex interdependencies between resources,
user interactions and system components. One challenge
in fingerpointing is understanding how the pieces of the
Emulab infrastructure fit together, when the majority of
its code is understood only by its developers. Determin-
ing and categorizing the various error types, when errors
are largely undocumented, is another problem.

However, Emulab has its advantages for fingerpoint-
ing. First, as an ASP, Emulab can and does log most
significant user interaction, and retains long-term his-
torical data about failures and many of the root-causes.
Second, all this occurs in a real-world, large-scale dis-
tributed setting involving multiple, concurrent users and
experiments, as well as hundreds of hardware and soft-
ware components. Third, we are developing and deploy-
ing new error-discrimination systems in a phased man-
ner, allowing us to quantify their impact.

Through error-reporting and fingerpointing tech-
niques, we seek to reduce operational cost by automat-
ically and accurately diagnosing the majority of Emu-
lab’s day-to-day failures. We leverage the existing error-
reporting systems to determine empirically which errors
are the most frequent. We then target this set of errors
in the development of a new error-reporting system that
aims for greater accuracy and less maintenance. This
more structured error-reporting serves as the first stage
of what will be a global, event-driven root-cause analy-
sis that fingerpoints problems with fine granularity.

2 Context: Emulab
The Emulab network emulation testbed is itself a large-
scale distributed system. Statically, it currently consists
of 490,000 lines of custom source code in 1900 files,
plus components from elsewhere. The Utah site serves
over 1300 users, manages 430 diverse local physical
nodes, 740 distributed nodes in whole (RON) or in part
(PlanetLab), dozens of switches and power controllers,
thousands of cables, and six robots. Dynamically, it

jdigney
Text Box
Proceedings of the 3rd USENIX Workshop on Real, Large Distributed Systems (WORLDS '06), Seattle, WA. Nov. 5, 2006.

manages thousands of virtual nodes, dozens of active ex-
periments, and thousands of “swapped out” experiments.
Most of the system runs on two core servers with 64 dae-
mons and periodic processes (37 custom, 27 standard),
plus one daemon per active experiment. 12 more dae-
mons run on each active test PC. Each time that a node
is configured as a part of an experiment, the servers run
about 40 scripts and the nodes run between 10 and 90
scripts, depending on type. We leverage the elabinelab
facility, an implementation of the Emulab testbed within
another Emulab testbed, for our initial experimentation.

A key Emulab function is to allocate and configure
networks and nodes according to users’ experimentation
needs. Each experiment request consists of a description
of the number and types of nodes, typically in a custom
network topology. Emulab dynamically configures the
nodes and networking layers accordingly. An emphasis
on interactive use makes setup speed a priority, so the
system is heavily parallelized and avoids conservative
timeouts, leading to additional complexity in this step.
Three fundamental swap-* procedures are involved:
Swap-in allocates the requested hardware nodes and
configures Emulab’s switching infrastructure to emulate
the requested network topology. Once the configuration
is readied, the user is granted root access to the allocated
machines and exclusive use of the virtual network for the
experiment’s duration.
Swap-out tears down a previously swapped-in experi-
ment, freeing the allocated nodes back into an available
node-pool but maintaining the experiment configuration
so that the experiment may be swapped-in again and
continued at a later date.
Swap-modify allows a user to reconfigure a running
or swapped-out experiment to add or remove nodes or
modify the virtual network topology.

3 History of Error-Reporting/Analysis
The Emulab software originally reported errors by writ-
ing diagnostic messages to stderr, which was logged and
emailed to both operators and the affected user upon
a swap-* failure (swap-* procedures are the primary
sources of important errors, and the bulk of this paper
implicitly focuses on that area).

As Emulab grew in size and gained popularity, the
number of automatic failure emails became a significant
cost in skilled operator time. Table 1 shows the statis-
tics for a sample month, broken down semi-manually,
although imperfectly. Note how large numbers of certain
errors are temporally clustered, a key clue for both hu-
man and automated analysis. These statistics show that
82 automated emails, but only 27 clusters, were gener-
ated per day on average.

Each category in Table 1 contains messages relevant
to testbed operators. Because of message redundancy,

Category Clusters Messages
DB Software 13 2% 1485 60%
Hardware Error 19 2% 19 1%
Audit 41 5% 42 2%
Unix System Software 49 6% 60 2%
Informational 77 9% 82 3%
Emulab Software 189 23% 303 12%
Resource Shortage 205 25% 220 9%
User Error 221 27% 248 10%

Table 1: Breakdown of automated messages sent to testbed oper-
ators in a representative month, April 2006. A cluster is a group of
messages in which each message is issued within 60 seconds of the
previous.

it is often unnecessary for testbed operators to analyze
each message one-by-one. However, due to their vol-
ume, most of these messages are ignored outright. One
goal of global fingerpointing is to reduce the number of
these redundant messages while preserving enough of
them to identify unique system-wide problems.

3.1 Initial Attempt at Fingerpointing

To reduce the volume of failure emails, we developed
a more robust logging mechanism, tblog, for the post-
processing and filtering of error messages. tblog consists
of a Perl module that provides testbed scripts with an
interface to an error-log database. Diagnostic messages
from each script’s stdout and stderr streams are automat-
ically logged in this database with a unique swap-* ses-
sion ID. tblog also allows scripts to write messages di-
rectly to the error-log database with optional additional
context, such as the cause of the error.

The context written to the error-log database allows
for the post-processing and analysis of swap-* failures.
During the post-failure cleanup phase, tblog tries to de-
termine which of all of the errors generated in the cur-
rent session are the most relevant to operators in diag-
nosing the failure’s cause. tblog reconstructs the script
call-chain for each reported error. Analogous to a call-
stack backtrace, the script call-chain describes script-
execution in both chronological and depth orders (see
Figure 1 for a real example). tblog ascertains which
script (assign in Figure 1), of those in the call-chain,
recorded errors most recently at the greatest depth; this
script and its associated errors are flagged as relevant.
This approach works well in many cases because errors
reported earlier chronologically (ERR:1) are often in-
consequential to later errors (ERR:2) at a given depth.
Errors reported at shallower depths (ERR:4–5) than the
flagged scripts (ERR:3) are assumed to provide only
summary or redundant information.

tblog has improved error discrimination and reduced
the failure-message load. tblog identified 63% of all
swap-* failure messages in April as not warranting op-
erator attention so that operators could filter these mes-
sages out.

Error-Log
Database

sc
ri

p
t-

ex
ec

u
ti

o
n

(c
h

ro
n

o
lo

g
ic

al
)

o
rd

er

depth order

Flagged as relevant by
automated analysis

This error alone
temporary resource
shortage ()

tblog
�

misdiagnosis

Flagged as relevant by
manual hinting, complements

automated analysis
and corrects misdiagnosis
user configuration error
()

tblog
�

correct diagnosis

swapexp

tbswap

eventsys_control

snmpit

genelists

assign

ptopgen

ptopgen

ERR:5

ERR:4

ERR:3

ERR:2ERR:1�

�

assign_wrapper

assign

Figure 1: Manual hinting vs. automated tblog post-processing of
the script call-chain for a real failure on Emulab.

3.2 Lessons learned from the tblog Approach

Opaque Failure Messages: tblog’s human inter-
pretable (rather than machine interpretable) failure mes-
sages are often vague or lacking in context details.
While they may identify the error manifestation, the fail-
ure messages do not provide enough additional informa-
tion for spatial correlation across multiple failures. Sec-
ond, the failure messages themselves are cumbersome
to parse. Strict message-matching rules can become
outdated when failure messages are altered or updated;
loose matching rules can lead to obfuscation when mul-
tiple unrelated failure messages are mistakenly traced to
the same root-cause. Third, two scripts may, in fact, be
generating the same error, but that error can manifest it-
self in the form of two different messages if the scripts
are written by different authors. Thus, writing an error
parser for the machine analysis of tblog-collected failure
messages is impractical.

Because of the variety of Emulab failure messages
and inconsistencies between them, these failure mes-
sages do not directly map to discrete error types. The
only attempt to categorize the failure messages has been
through tblog’s root-cause assignment (canceled, hard-
ware, internal, software, temp, user, and unknown). Un-
fortunately, these cause assignments are coarse cate-
gories that by themselves are not precise enough to facil-
itate global fingerpointing. Without discrete error types
or fine-grained error categorization, (i) it is impossible
to automatically generate even simple statistics concern-

ing the number and frequency of different Emulab er-
rors, and (ii) there is no discernible direction in which to
drive global analysis.

Absence of Error Context: Although tblog captures a
general context (including time stamp, script name, etc.)
for each error, the specific context (including relevant
nodes, operating system images, and other experiment
configuration parameters) surrounding different errors is
sometimes not explicitly logged or propagated because
tblog’s opaque error messages often do not include these
variables. In manual error-analysis, testbed operators
must look up these variables from the experiment con-
figuration or by examining the entire experiment log that
includes informational and debug messages as well as
“irrelevant” errors and warnings. Although human oper-
ators can locate and infer relevant parameters, these pa-
rameters must be incorporated with the error information
in an automated global root-cause analysis engine.

4 Structured Error Reporting:
A New Approach

The lessons learned from tblog reveal the inadequacies
of any similarly constructed error-reporting mechanism
in a large-scale distributed system. These lessons also
drive our requirements and our design for a new local
error-analysis approach that would be much more suited
for global fingerpointing.

4.1 Ingredients of a Solution

We have identified two requirements of a generalized er-
ror reporting system for facilitating global analysis.

Discrete Error Types: All generated errors must be
assigned a single specific error type. Error types should
be well described so that there is no ambiguity behind
the meaning of an error. While testbed operators may
be able to infer the exact meaning of an error, machine
analysis benefits from consistent and well-defined er-
ror input. Furthermore, discrete error types are eas-
ily queryable for gathering statistics; maintaining up-to-
date statistics on relative error frequencies provides di-
rection for global fingerpointing.

Error Context & Propagation: Each discrete error
type should be accompanied by any contextual informa-
tion. Given that we are recording all of the error infor-
mation (including context) in the error-log database, the
context categories must be consistent. Global analysis
can then perform context correlation across many errors
of the same type, increasing fingerpointing precision.

The context must be captured at the time that the error
is generated. As the script call-chain continues to ex-
ecute or is aborted, any subsequent errors and their as-
sociated context must be grouped to form a cumulative

error context for the scope of the local error-analysis do-
main (which happens to be a swap-* procedure in Emu-
lab). The purpose of this accumulated context is to allow
for its automated processing (inline or post-processed),
which involves filtering out secondary or “me too” errors
that are observed and deemed irrelevant within a single
local analysis domain.

4.2 A Recipe for Emulab

In our adaptation of these two requirements to the Em-
ulab system, we were able to utilize months of tblog-
collected failure messages.

Implementing Discrete Error Types: Although there
did not exist a one-to-one mapping of failure messages
to error types, many of the collected failure messages did
suggest an appropriate type designation.

In identifying Emulab’s discrete error types, we were
unable to obtain full coverage of all errors. In fact, it is
impossible to obtain 100% coverage as Emulab devel-
opers routinely add new features, leading to new failure
scenarios. Instead, we extracted frequently observed er-
rors, based on tblog-collected data, to serve as an initial
target set.

Implementing Error Context & Propagation: In
choosing error contexts for each error type, we included
fields that would meaningfully distinguish instances of
a single error from each other. For example, in the in-
stance of a node boot failure, it is meaningful to include
both the hostname of the node that failed and the OS
image that failed to boot.

In our local analysis, we distinguish between primary
and secondary errors. A primary error might indicate
that a certain procedure within a script failed, while
a secondary error might indicate that the script itself
failed. Secondary or “me too” errors often do not include
any additional context as they only occur in the presence
of a more relevant primary error. Because the entire set
of unique secondary errors is significantly smaller than
that of unique primary errors, by observing a secondary
error with no corresponding primary error, we can infer
that an unidentified primary error must exist. We then
identify the primary error using tblog analysis and in-
clude it as a new error type in the target set.

Fortunately, the tblog analysis engine already pro-
vides Emulab with an error discovery and reporting
mechanism within a single swap-* session. However,
aiming for a simple, generalized reporting architecture
applicable to other distributed systems, we developed a
new reporting engine based on the manual assignment of
static, numeric severity levels. The severity-level assign-
ment has a two-fold purpose, (i) to distinguish between
primary and secondary errors, and (ii) to assign relative
importance to primary errors of different types.

Occurrences Error Type
31 26.3% assign violation/feasible
24 20.3% assign type precheck/feasible
22 18.6% node boot failed
10 8.5% ns parse failed

7 5.9% assign fixed node/feasible
6 5.1% node load failed
5 4.2% over disk quota
4 3.4% invalid os
3 2.5% cancel flag
2 1.7% assign mapping precheck/infeasible
2 1.7% assign type precheck/infeasible
1 0.8% invalid variable
1 0.8% snmp get fatal

Table 2: Unique-per-session errors grouped by error type. A fea-
sible error refers to experiment requests that could be realized given
enough free resources, and an infeasible error refers to experiment re-
quests that could never be realized with the current testbed resources.

4.3 Deployment in Production Environment

After a few weeks of evaluating and fine-tuning our new
reporting engine in the elabinelab emulation environ-
ment, we submitted our new code for deployment in the
Emulab production system. A deployment decision was
made to enhance the original tblog framework with our
new reporting mechanism to result in a new local analy-
sis engine called tbreport.

While tbreport currently utilizes the severity-level
mechanism, it is possible for it to leverage tblog’s call-
chain relevance analysis as described in Section 3.1.

5 Initial Results
One of the immediate benefits of the new tbreport sys-
tem is our ability to collect a variety of meaningful statis-
tics for each error type that are not available from the
tblog opaque failure messages. Our observations in this
section are derived from examining a week’s worth of
error data collected since the tbreport system was added
to the production Emulab testbed. Although this data set
is over too short a period of time to accurately reflect
Emulab’s long-term performance, it is certainly illustra-
tive of the types and frequency of errors that we have
seen in prior months.

In the following statistics, a fatal error is one that is at
least partially responsible for a swap-* session failure. If
multiple errors of the same type occur within a swap-*
session, only one instance of that error is counted in the
unique-per-session category.

From August 16-24th, 2006, we observed that:

• 681 swap-* sessions started;
• 108 (17.3%) sessions reported at least one error;
• 283 total fatal errors reported; and
• 118 total unique-per-session errors reported.

In addition, two-thirds of all unique-per-session errors
consist of only three error types (see Table 2).

5.1 Resource-Shortage Failures

The first two errors listed in Table 2 are caused by Em-
ulab resource shortages, usually due to a lack of nodes.
The second error, assign type precheck, results
from a user’s attempt to swap-in a session when there
are insufficient free nodes available to uniquely allo-
cate each experiment node. Since the number of cur-
rently free nodes by machine type is listed on the Emulab
Web Interface, ideally, this error is avoidable. In prac-
tice, users often attempt to swap-in experiments with-
out checking node availability. Additionally, in rare
cases, race conditions can occur when two experiments
attempt to allocate the same set of free nodes. Statis-
tics derived from the context associated with these fail-
ures illustrate the user demand: nearly half (48%) of all
assign type precheck errors were due to insuffi-
cient nodes of a single type (pc3000) when users, on av-
erage, requested 10.3 more nodes than were currently
available. By collecting statistics on resource demands
when resource shortages occur, Emulab’s administrators
can target future hardware purchases to address experi-
ment needs and reduce the frequency of these failures.

The most frequently observed testbed errors are of
type assign violation. An assignment violation
occurs when there are enough nodes available to sat-
isfy an experiment swap-in request, but the node as-
signment routine is unable to generate a complete ex-
periment mapping due to violations of physical mapping
constraints (i.e., oversubscribed bandwidth). Typically,
the user is unable to predict whether an assignment vi-
olation might occur. Moreover, because the assignment
algorithm is non-deterministic, it is possible that subse-
quent swap-in attempts will succeed even if there is no
change to the testbed topology. As a result, users are of-
ten frustrated by assign violation errors and re-
peatedly attempt to swap-in, in hopes of success.

From the assign violation error context, we
observed that a single user was responsible for 74.2%
of all assign violation errors. In fact, this partic-
ular user was responsible for 29.6% of all failed swap-*
sessions mostly due to these assign violation er-
rors. When these statistics were brought to the attention
of testbed operators, they recognized that this individ-
ual operated experiments that were unusually taxing on
the assign algorithm, and discussed the possibility of im-
proving the algorithm for this case. Therefore, the tbre-
port-collected statistics proved to be useful in tuning the
assign algorithm to reduce error frequency.

5.2 Node-Boot Failures

The third most frequently observed testbed error is
of type node boot failed. Unlike assignment er-
rors that are typically caused by resource shortages,
node boot failed errors can occur due to many un-

derlying causes. These errors occur during the reboot
phase after a node is loaded with an experiment OS im-
age. In normal operation, the node will boot the exper-
iment OS and launch a status daemon that reports that
the node has successfully rebooted. If for any reason
the status daemon does not launch, the node will not re-
port success, and eventually, the swap-in procedure will
time-out declaring a node boot failed error.

Since experiment configurations may specify a user-
contributed OS image, it is more difficult (as com-
pared to resource-shortage failures) to diagnose the root
cause of node boot failed errors from examining
a single-node, single-session swap-* error trace. Often,
testbed users or operators will need to analyze the out-
put of a serial console log to determine the problem. Two
options exist for handling node boot failed errors
in the single-node, single-session case. First, testbed
operators may assume that the failed node hardware is
faulty and remove it from the pool of free nodes until the
hardware is later confirmed to be in working order. Sec-
ond, operators may assume that the OS image was built
incorrectly and return the failed node back in the pool of
free nodes. Neither solution is ideal or necessarily cor-
rect; removing a good node can result in more resource-
shortage errors, while leaving in a faulty node can re-
sult in more node boot failed errors. Currently,
testbed operators assume the former approach when the
standard Emulab-provided OS images fail to boot, and
assume the latter approach when a user-contributed OS
image fails to boot.

Because of the number of factors involved, analysis of
a single node boot failed error in a single-node,
single-session trace is insufficient for root-cause anal-
ysis. However, by comparing and correlating multiple
instances of the node boot failed error in multi-
ple sessions (and across multiple nodes), global domain
analysis might reliably fingerpoint the culprit.

As an example, contrast a single node-boot failure
within a single session to one across two or more ses-
sions (see Figure 2). In the first case, if one node fails
to boot one OS image, it is not discernible whether ei-
ther or both are faulty. However, if two different nodes
in two different sessions fail to boot the same OS image,
we can suggest that the OS image, rather than the nodes,
is likely to be faulty. In addition, if the nodes that failed
to boot a specific OS image succeed in booting other OS
images, then we can reliably infer that the specific OS
image is faulty and that the nodes are not. Similar ar-
guments can be used to fingerpoint a faulty node rather
than the OS images.

This inter-session error-context correlation demon-
strates our motivation for global analysis. With
node boot failure errors being the third most
common error type and representing nearly a fifth of all

pc297

pc297 pc297

pc297
cust_os1

cust_os1

cust_os1

cust_os1

cust_os1

cust_os2

cust_os2

pc301

pc301 pc301

Single node, session
culprit

one
Unknown

(a)

(b)

(c)

Two nodes, sessions, OS
bad OS

two same
Suggests

+

Same four different
Strongly suggests

two nodes, sessions, OS
bad OS

Figure 2: Analysis of single-node, single-session vs. multiple-node,
multiple-session node-boot failures.

error cases, the statistics that we have gathered provide
us with immediate direction for global analysis.

6 Looking Forward
Having deployed our new tbreport mechanism, our cur-
rent work focuses on collecting error reports over a long-
term period for a better analysis of error trends, and in-
creasing error coverage as we discover instances of sec-
ondary errors with unknown primary errors. We also
intend to exploit our tbreport-derived statistics to target
problem cases for a global root-cause analysis daemon
that would reliably fingerpoint error sources, at the sys-
tem level, where manual analysis is currently required.

7 Related Work
Current root-cause analysis approaches mostly focus on
using performance metrics to pinpoint faulty compo-
nents on a request- or session-level basis.

Aguilera et al. [1] use message-level traces to ascribe
performance problems to specific nodes on causal re-
quest paths. Magpie [2] captures the control-path and
resource demands of application requests as they span
components and nodes, and uses behavioral clustering
to construct models that can be used for anomaly de-
tection. Cohen et al. [4] use machine learning to iden-
tify system metrics that are most correlated with SLO
violations, and extract indexable failure signatures for
root-cause analysis. Kiciman et al. [5] determine the
cause of partial failures by monitoring the flow of re-
quests through the system and using historical behavior.

However, there may be hidden dependencies across
nodes and sessions that are not directly related to the
request call-graph. Recent efforts at Amazon.com [3]
explore tools to help administrators monitor system

health, understand system dependencies and suggest
troubleshooting procedures for recurring problems.

Closer to our work is Pip [6], a tool for discovering ap-
plication bugs by analyzing actual system performance
and comparing it to expected performance. Pip could
be applied to Emulab at the global level by considering
each swap-* session to be a task, and each swap-* error
to be an annotated event. Expectations could be written
for different global failure patterns and matched against
them. However, our efforts were concurrent with Pip’s
development, and modifying the swap-* scripts to report
errors was sufficient for our fingerpointing results.

8 Conclusion
This paper focuses on our current (tblog) and new local
error-analysis (tbreport) strategies for Emulab. tbreport
enhances Emulab code with structured error-reporting
and context propagation, and has undergone preliminary
evaluations in a production environment. We aim to con-
tinue to collect well-categorized failure statistics using
tbreport and then leverage the resulting empirical evi-
dence to implement global fingerpointing.

Acknowledgements
We thank our shepherd, Janet Wiener, for her comments
that helped us to improve this paper. We thank Mike
Hibler and Eric Eide for their feedback, and Kirk Webb,
Russ Fish, and Leigh Stoller for their help with gathering
and analyzing Emulab statistics.

References
[1] AGUILERA, M. K., MOGUL, J. C., WIENER, J. L., REYNOLDS,

P., AND MUTHITACHAROEN, A. Performance debugging for dis-
tributed systems of black boxes. In SOSP (Boston Landing, NY,
Oct. 2003), pp. 74–89.

[2] BARHAM, P., DONNELLY, A., ISAACS, R., AND MORTIER, R.
Using Magpie for request extraction and workload modelling. In
OSDI (San Francisco, CA, Dec. 2004), pp. 259–272.

[3] BODIK, P., FOX, A., JORDAN, M. I., PATTERSON, D.,
BANERJEE, A., JAGANNATHAN, R., SU, T., TENGINAKAI, S.,
TURNER, B., AND INGALLS, J. Advanced tools for operators at
Amazon.com. In HotAC Workshop (Dublin, Ireland, June 2006).

[4] COHEN, I., ZHANG, S., GOLDSZMIDT, M., SYMONS, J.,
KELLY, T., AND FOX, A. Capturing, indexing, clustering, and
retrieving system history. In SOSP (Brighton, United Kingdom,
Oct. 2005), pp. 105–118.

[5] KICIMAN, E., AND FOX, A. Detecting application-level failures
in component-based internet services. IEEE Trans. on Neural Net-
works 16, 5 (Sept. 2005), 1027–1041.

[6] REYNOLDS, P., KILLIAN, C., WIENER, J. L., MOGUL, J. C.,
SHAH, M. A., AND VAHDAT, A. Pip: Detecting the unex-
pected in distributed systems. In NSDI (San Jose, CA, May 2006),
pp. 115–128.

[7] WHITE, B., LEPREAU, J., STOLLER, L., RICCI, R., GU-
RUPRASAD, S., NEWBOLD, M., HIBLER, M., BARB, C., AND
JOGLEKAR, A. An integrated experimental environment for dis-
tributed systems and networks. In OSDI (Boston, MA, Dec.
2002), pp. 255–270.

	Introduction
	Context: Emulab
	History of Error-Reporting/Analysis
	Initial Attempt at Fingerpointing
	Lessons learned from the tblog Approach

	Structured Error Reporting:A New Approach
	Ingredients of a Solution
	A Recipe for Emulab
	Deployment in Production Environment

	Initial Results
	Resource-Shortage Failures
	Node-Boot Failures

	Looking Forward
	Related Work
	Conclusion

