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ABSTRACT

Although user-defined functions (UDFs) are a popular way to aug-
ment SQL’s declarative approach with procedural code, the mis-
match between programming paradigms creates a fundamental
optimization challenge. UDF inlining automatically removes all
UDF calls by replacing them with equivalent SQL subqueries. Al-
though inlining leaves queries entirely in SQL (resulting in large
performance gains), we observe that inlining the entire UDF often
leads to sub-optimal performance. A better approach is to analyze
the UDF, deconstruct it into smaller pieces, and inline only the
pieces that help query optimization. To achieve this, we propose
UDF outlining, a technique to intentionally hide pieces of a UDF
from the optimizer, resulting in simpler UDFs and significantly
faster query plans. Our implementation (PRISM) demonstrates that
UDF outlining improves performance over conventional inlining
(on average 1.29x speedup for DuckDB and 298.73% for SQL Server)
through a combination of more effective unnesting, improved data
skipping, and by avoiding unnecessary joins.
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1 INTRODUCTION

Application developers extend SQL’s capabilities by incorporat-
ing user-defined functions (UDFs) written in other programming
languages (e.g., Python, JavaScript, PL/SQL) into their queries. How-
ever, queries with UDF calls are challenging for a database system’s
query optimizer to reason about when choosing a good query plan
because they are opaque functions written in a non-relational para-
digm. As a result, queries with UDFs are often orders of magnitude
slower than equivalent queries written without UDFs.
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To address this impedance mismatch, researchers developed
optimization techniques for UDFs, including compilation (i.e., gen-
erating specialized machine code for the UDF) [40, 43], batching (i.e.,
coalescing individual UDF invocations) [17, 22], and more recently,
UDF inlining (i.e., translating a UDF into an equivalent SQL sub-
query) [26, 46, 49]. Inlining has shown the most potential of these
techniques, providing up to 1000x performance improvements for
workloads in a commercial DBMS [6].

The effectiveness of inlining stems from its ability to represent
UDFs as SQL subqueries, a relational form that the DBMS can
optimize. For example, x=y becomes SELECT y AS x, and IF/ELSE
blocks become CASE WHEN expressions. The DBMS then chains these
translated expressions together using LATERAL joins, resulting in a
SQL subquery equivalent to the original UDF. Inlining then replaces
the original UDF call with the generated subquery that it injects
into the calling query, leaving it in a purely relational form that
enables the query optimizer to find better query plans.

The problem, however, is that inlining leaves many UDFs in an
obfuscated form that the DBMS cannot reason about and optimize
effectively. Figure 1 shows a UDF-centric query from Microsoft’s
SQL ProcBench [21] (a benchmark modeled after Azure customer
workloads). The figure demonstrates that inlining the entirety of the
UDF generates complex subqueries containing LATERAL joins that
are (1) challenging to unnest and optimize and (2) slow to execute.

A better approach is to deconstruct the UDF, identify the frag-
ments beneficial for inlining, and expose them to the query opti-
mizer. Now, UDF-centric queries become simpler and LATERAL-free
by inlining only the code fragments necessary for better query
plans. However, deconstructing a UDF is challenging for several
reasons. First, users mix procedural and relational code by embed-
ding SELECT statements inside control flow (conditionals/loops),
preventing the DBMS from applying different optimization tech-
niques to the same code block. Second, deciding which code to
inline while minimizing code size is difficult. Lastly, users often
write UDF predicates in WHERE clauses, which existing optimization
techniques fail to exploit for data-skipping.

Given this, we present the PRISM UDF optimization frame-
work. When an application registers a new UDF (i.e., with a CREATE
FUNCTION command), PRISM performs analysis to carefully decon-
struct the function into pieces, inlining some pieces and intention-
ally hiding others from the optimizer. The critical technique PRISM
uses to achieve this is UDF outlining, which extracts UDF code
fragments into separate functions that are intentionally not inlined,
minimizing UDF code complexity. With the ability to either inline
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Figure 1: Overview of PRISM- The existing approach to UDF optimization (FROID) translates UDF execution from row-by-row oriented execution into
a SQL subquery that it inlines into into the calling query. Our approach (PRISM) deconstructs a UDF into separate inlined and outlined UDF pieces. The
framework injects inlined pieces into the calling query, but then compiles outlined pieces to machine code so that they are opaque to the DBMS’s optimizer.

or outline pieces of a UDF, PRISM strategically restructures UDFs,
maximizing the outlined pieces to reduce UDF complexity while
inlining any pieces that may lead to better query plans. In addition,
PRISM injects UDF predicates into a query’s WHERE clause to make
data-skipping opportunities transparent to the optimizer.

To achieve this, PRISM performs five complementary UDF-centric
optimizations that combine to address the drawbacks of inlining: (1)
Predicate Hoisting, (2) Region-Based UDF Outlining, (3) Instruction
Elimination, (4) Subquery Elision, and (5) Query Motion).

We integrated PRISM into DuckDB [45] and Microsoft SQL
Server to evaluate our approach. Our experimental results show
that after PRISM simplifies UDFs, they become straightforward
for DBMSs to optimize and execute. As a result, PRISM acceler-
ates UDF-centric queries from the Microsoft ProcBench [21] (by an
average of 1.3x on DuckDB and 298.7x on SQL Server, and by a
maximum speedup of 2270.2x and 2997.9x, respectively).

We make the following contributions in this paper:

(1) We identify the performance challenges introduced by UDF
inlining during query optimization and execution: complex
sub-queries containing LATERAL joins generated when inlining
the entirety of a UDF (Section 2.4).

(2) We introduce UDF outlining, a method to extract pieces of a
UDF into separate functions to avoid inlining them, enabling
more effective UDF optimization (Section 3.1).

(3) We propose four complementary UDF-centric optimizations
that restructure a UDF (Section 4), inlining only the pieces that
lead to fast plans while maximizing the amount of outlined
code and hoisting UDF predicates for data-skipping.

2 BACKGROUND

UDFs allow users to extend the database systems’ functionality by
mixing imperative and declarative programming paradigms. But
they create an impedance mismatch between UDFs and SQL that is
challenging for both query optimization and execution. As we now
describe, these problems have led to the development of methods
to automatically optimize UDFs, but they all have drawbacks.

2.1 Compilation

Some DBMSs employ compilation techniques to reduce the engi-
neering overheads associated with UDFs. As early as 2001, Oracle
added support for “native compilation” of PL/SQL UDFs [43], tran-
spiling them to C code, compiling the code into a shared library.
This allows the DBMS to execute a UDF as though it were a built-
in function. Oracle also provides the PRAGMA UDF knob to allow
the DBMS to reuse memory frames/data structures for function
argument passing to reduce context switching overhead [14] .
Microsoft SQL Server similarly added the ability to compile T-
SQL UDFs to machine code in 2016 [40]. SingleStore added sup-
port to compile PL/pgSQL UDFs to LLVM IR in 2021 [50]. For
dynamically-typed UDFs (i.e., Python UDFs), just-in-time (JIT) com-
pilation is essential and is adopted by systems such as YeSQL [15,
16], BabelFish [19], Tuplex [51, 52], and Actian Vector [32]. How-
ever, compilation is ineffective if the chosen plan is sub-optimal.

2.2 Batching

Another earlier optimization technique is to batch invocations to
amortize context-switching overheads of executing UDFs one row
at a time. In 2008, researchers first proposed batching UDF invo-
cations using program rewriting rules [22]. This approach only
applies to DBMSs with a UDF interpreter rather than translating
the batched queries to pure SQL. Later work refined UDF batch-
ing by rewriting UDF-centric queries to execute as a sequence of
UPDATE statements on a temporary table [17]. Although this tech-
nique simplifies UDF-centric queries substantially, the overhead of
materializing temporary tables is prohibitive and not scalable.

2.3 Inlining

For a DBMS to achieve truly excellent performance for UDF-centric
queries, the optimizer must reason about the UDF’s semantics as
if it were written in SQL. UDF inlining [49] (developed in 2014)
accomplishes this by translating UDFs into relational algebra (RA)



that the DBMS can optimize effectively. Inlining translates each pro-
cedural instruction in a loop-free PL/SQL UDF to an equivalent RA
expression. IF/ELSE blocks become CASE WHEN statements, assign-
ments (i.e., x = y) become projections (i.e., SELECT y AS x). Then,
the DBMS chains together the translated statements with APPLY op-
erators !, creating a single RA expression which is equivalent to the
original UDF. Although the 2014 approach laid the foundation for
future research, the main drawback is that it requires modifying the
query optimizer to support extensions of the APPLY operator, which
is not possible in closed-source systems and requires significant
testing to avoid regressions.

Microsoft’s FROID pioneered a translation strategy to con-
vert UDFs to relational algebra without requiring extensions to
APPLY [46]. After inlining a UDF, the DBMS employs parallel, set-
oriented execution plans instead of inefficient, serial, iterative plans.
Microsoft released FROID with SQL Server 2019 and showed up to
1000x performance improvements for customer workloads [6].

Although FROID only supports inlining of loop-free UDFs, fur-
ther techniques have since lifted this restriction. Aggify [20] for
example, uses dataflow analysis to replace all cursor loops inside a
UDF with custom aggregate functions, enabling the UDF to then
be inlined. However, both FROID and Aggify require significant
changes to the internals of the DBMS.

More recently, the Apfel framework provides a pure SQL trans-
lation for UDFs [26]. For a given UDF, Apfel converts its procedural
logic into a series of SELECT statements representing the same com-
putation. The framework combines these statements into a single
SELECT statement using LATERAL joins and then inlines the state-
ment into the calling query. Apfel supports arbitrary control flow
(including loops) via recursive common table expressions (CTEs).
Any DBMS that supports LATERAL joins can execute inlined UDFs
with Apfel, including systems that do not natively support UDFs.

2.4 Motivation

Inlining translates UDFs to complex subqueries containing LATERAL
joins that are challenging for the DBMS to optimize and execute
efficiently for the following three reasons:

Difficult to Unnest: Inlining generates complex subqueries that
are challenging for the DBMS to unnest (i.e., replace with join op-
erators). Prior work shows that inlining UDFs produces subqueries
that widely used DBMSs cannot unnest [17]. As a result, after in-
lining, the DBMS invokes the subquery once for each input row
(similarly to how the original query invoked the UDF), resulting
in extremely slow query execution. Although newer DBMSs like
DuckDB unnest arbitrary queries [42, 45], existing systems do not
perform arbitrary unnesting as it requires invasive changes to the
query optimizer (using DAG-shaped rather than tree-shaped query
plans, introducing special join operators). As we will show in Sec-
tion 6, even for DuckDB, which supports arbitrary unnesting, these
complex subqueries introduce additional join operators during the
unnesting process, slowing down query performance.

Prevent Data Skipping: Users often invoke UDFs as predicates
in a query’s WHERE clause (see Figure 1). With inlining, however, the
DBMS replaces UDFs with subqueries that it cannot push down into
the leaves of the query plan. These scenarios prevent the DBMS

IT-SQL’s APPLY is similar to the SQL:1999’s LATERAL join.

from employing data-skipping optimizations (i.e., block skipping
using zone maps or index scans), which causes queries to unneces-
sarily scan an entire table sequentially. Inlining obfuscates predi-
cates, thereby blocking the optimizer from reasoning about their
contents and identifying opportunities to avoid unnecessary work.

Inefficient Query Execution: By translating a UDF into a se-
quence of LATERAL joins, inlining creates inefficient queries because
DBMS optimizers struggle with join operators. Furthermore, in-
lining embeds these LATERAL joins inside a subquery, which, after
unnesting, the DBMS replaces with a join, incurring additional
overhead. Lastly, as we will show in Section 6, inlining translates
loops into Recursive Common Table Expressions (CTEs) that often
are an order of magnitude slower to execute than the loop in pro-
cedural form. Such issues argue for a UDF optimization technique
that reduces joins in a query rather than making more of them.

3 PRISM OVERVIEW

PRISM is a UDF optimization framework that deconstructs a UDF
into separate inlinable and outlinable pieces. Its goal is to inline
the UDF pieces, exposing the code most amenable to SQL-style
execution to the query optimizer while outlining as much of the
remaining code as possible.

As shown in Figure 1, when the application installs a new UDF
into the database (i.e, CREATE FUNCTION), PRISM examines the func-
tion’s contents to identify (1) which parts to inline into the calling
query and (2) which parts to compile into machine code as separate
functions through outlining. By only inlining a small portion in-
stead of the entire UDF, PRISM eliminates all LATERAL joins. Thus,
outlining provides two benefits: (1) it hides the outlined code from
the optimizer through an opaque function, thereby minimizing the
UDF complexity and resulting in simpler queries for the DBMS
to optimize, and (2) the system can compile the outlined code to
machine code to improve performance. As a result, PRISM’s opti-
mizations overcome all the limitations described in Section 2.4.

We now describe PRISM’s architecture in more detail. We then
discuss PRISM’s intermediate representation of UDFs to support
our new optimizations in Sections 3.2 and 3.3.

3.1 Architecture

Figure 1 depicts the overall architecture of PRISM for the motivating
example from Section 1. Compared to existing approaches which
operate at query time (replacing the row-by-row UDF execution
@ @ by inlining the UDF into the calling query (3)), our approach
(PRISM) occurs when a CREATE FUNCTION command is registered
with the system. At this stage PRISM parses, binds, and translates
the UDF to an intermediate representation (IR) (shown in Figure 2).
PRISM then applies a suite of novel compiler optimizations (@) .
First, PRISM decouples procedural and relational code with query
motion (Section 4.1) to expose the largest possible code sequences
for outlining. Next, UDF outlining (Section 4.2) extracts these code
sequences into separate outlined pieces (), which are then com-
piled to machine code (§), replacing the original code with opaque
function calls (7) that minimize the UDF complexity. Then, instruc-
tion elimination (Section 4.3) removes as many instructions in the
UDF as possible, collapsing a UDF down to a single RETURN instruc-
tion that does not require LATERAL joins when inlined (7). Subquery



CREATE FUNCTION getManufact(item id INT) RETURNS CHAR(50) UDF
AS $$
DECLARE
1 man CHAR(50) = '*;
2 cntl INT;
3 cnt2 INT
BEGIN
4 cntl = | (SELECT COUNT(*)
FROM store sales_history, date_dim
WHERE ss_item sk = item id
AND ss_sold date sk = d_date sk
AND d_year = 2023); UDF to
s| otz = [sELECT counT(r) PRISM IR
FROM catalog sales_history, date dim >
WHERE cs_item sk = item id
AND cs_sold date sk = d_date sk
AND d_year = 2023);
6 IF (cntl > 0 AND cnt2 > 0) THEN
7 man = | (SELECT i manufact
FROM item
WHERE i_item_sk = item_id);
8 ELSE
9 man = 'outdated item';
10 END IF;
11 RETURN man;
END; $$ LANGUAGE plpgsql;

entry:

cntl.1 = (SELECT .);
5 cnt2.1 = (SELECT .);
branch [LO];

blocke:
6 branch (cntl.1 > 0 AND cnt2.1 > 0) [L1,L2];

LR4 - T LRS

blockl: block2:
man.1 = (SELECT .); 8
branch [L3];

= 'outdated item';

man.2
branch [L3];

block3:
10 man.3 = ¢(man.1,man.2);
branch [L4];

LR6

blockd:
1 return man.3;

Figure 2: PRISM’s Intermediate Representation (IR) — PRISM uses an SSA-based IR, ensuring variables are assigned exactly once in the entire program.
The IR also encodes high-level structured control flow (conditionals, loops) as a hierarchy of program regions. LR denotes a leaf region, CR denotes a

conditional region, and SR denotes a sequential region.

elision (Section 4.4) then replaces the original UDF call with the re-
turn value of the UDF (), bypassing the inlining step and avoiding
the generated subquery. Lastly, predicate hoisting (Section 4.5) ana-
lyzes loop-free UDFs and saves them as boolean predicates injected
into a query’s WHERE clause, making data-skipping optimizations
transparent to the optimizer. Unlike existing approaches that pro-
duce subqueries that are hard to unnest and slow to execute, PRISM
produces LATERAL-free queries that are easier to unnest and faster.

3.2 Static Single Assignment (SSA) Form

PRISM represents UDFs as control flow graphs (CFGs) in static single
assignment (SSA) form [5, 47] (shown in Figure 2). The CFG sim-
plifies program analysis by breaking down high-level procedural
constructs (loops, conditionals) into conditional and unconditional
jumps (branches) between basic blocks [2]. Each basic block holds
a sequence of non-branching instructions (assignments, function
calls), followed by a single terminator instruction (a jump or return)
that ends the basic block. In the CFG, nodes represent basic blocks
and jumps create a directed edge from the source to the target block.

SSA form is an intermediate representation (IR) that ensures
each variable is assigned exactly once. SSA form simplifies compiler
design by making data flow explicit in the IR and is used in nearly
all modern compiler implementations (e.g., LLVM) [33, 36, 53].

To convert to SSA form, existing variables (i.e., man from Fig-
ure 2) are assigned versions (i.e., man.1, man.2, man.3), one for each
program point where the variable is assigned a value. At join points
in the CFG (block3), ¢-functions are inserted (i.e., man.3=¢(man.1,
man.2)) where each ¢ argument indicates the variable’s value when
control flow passes from a given predecessor. Note that ¢ functions
are not executable, and the compiler eventually converts the pro-
gram out of SSA form. Although PRISM uses SSA for simplicity,
our optimizations also apply to non-SSA programs.

3.3 Regions

PRISM represents UDFs as a program structure tree [28], a hier-
archy of single-entry single-exit (SESE) program regions [1, 23]
(shown in Figure 2). Unlike the CFG that represents control flow
as jumps, regions retain the high-level structured control flow of
the original program (conditionals, loops) [1, 23, 28], simplifying

certain compiler optimizations. There are four types of regions: leaf
regions (a single basic block), conditional regions (blocks contained
in an IF/ELSE), loop regions (blocks contained within loops), and
sequential regions (a sequence of nested regions).

In Figure 2, the entire UDF is a single sequential region SR1
comprised of nested subregions. The subregions are leaf region
LR2, followed by conditional region CR3, and terminating with leaf
region LR6. CR3 contains block block0, which branches control
flow between the IF and ELSE regions denoted by LR4 and LR5,
respectively, followed by the fall through block block3, which joins
control flow from the previous regions.

During SSA construction, ¢ functions, conditional branch in-
structions, and SELECT statements are placed in individual basic
blocks ensuring that PRISM can cleanly construct program regions.
By placing SELECT statements in leaf regions, non-SELECT code can
be outlined independently (described in Section 4.2). By represent-
ing the program as a hierarchy of regions, each region has a single
entry and exit point, enabling PRISM to outline regions as separate
functions (shown in Section 4.2).

4 UDF-CENTRIC OPTIMIZATIONS

PRISM contains a suite of UDF-centric optimizations that restruc-
ture a UDF by splitting it apart into pieces and then optimizing
them through a combination of UDF outlining and inlining. As we
demonstrate in Section 6.7, these optimizations are complemen-
tary and are meant to be combined together to achieve the best
performance for UDF-centric queries.

For the examples in this section, we illustrate PRISM’s code
changes to the UDF using (1) blue to represent SQL code (i.e.,
embedded SELECT statements, queries), (2) red to represent deleted
code, and (3) green to represent new code added.

4.1 Query Motion

Users often place SELECT statements inside of UDF control flow,
such as conditionals and loops (including in our motivating exam-
ple). However, mixing relational and procedural code introduces a
challenge for UDF optimization. On the one hand, the DBMS should
inline SELECT statements, making them transparent to the query
optimizer. On the other hand, the DBMS should outline procedural



Algorithm 1: Query Motion

Function QueryMotion (UDF f):
changed « True;
while changed do
changed « False;
worklist « 0;
forall I « f.getInstructions() do

if I.containsSELECT() then

| worklist.insert(I);

forall I «— worklist do
vars «— I.getRHS() .getUsedVariables();
region < I.getRegion();
conds «— 0;
while vars N region.getDefs() = 0 do

if region.isConditional() then
conds « conds U region.getCond();
vars < vars U region.getCond();

region < region.getParentRegion();
if region # I.getRegion() then
changed < True;
I.hoistToRegion(region, conds);
return changed;

control flow into opaque function calls, minimizing the UDF code
size and the number of LATERAL joins that inlining generates. Cou-
pling the relational code with procedural control flow prevents
outlining of the procedural code, forcing the DBMS to inline the
entire region and produce complex, hard-to-optimize subqueries.

A better approach is for the DBMS to hoist the SELECT state-
ments outside of the procedural code (shown in Figure 3), splitting
the UDF into pieces containing only procedural code (optimized
for outlining) and relational code (optimized for inlining)?. At the
same time, it must carefully hoist the SELECT statement to avoid
introducing redundant work and performance regressions.

PRISM achieves this by performing query motion using Algo-
rithm 1. The idea is to repeatedly hoist SELECT statements as high as
possible in the program until no further hoisting is possible. If the
statement’s variables do not depend on the current region, PRISM
hoists the statement to the parent region. The process repeats until
the current region defines at least one of the statement’s variables.
When hoisting through conditional regions, PRISM appends any
predicates that guard these regions to the SELECT statement, ensur-
ing that the query only executes when the predicate holds and no
performance regressions occur.

Figure 3 illustrates the hoisting process for our motivating ex-
ample. (7) Algorithm 1 first chooses the SELECT statement on line 9
as a candidate for hoisting. Next, (2) PRISM determines line 7 as the
highest program point for hoisting and adds a temporary variable
temp of the same type as the SELECT to the UDF. Then, 3) PRISM
assigns the return value of the SELECT to the temporary, where
the condition from line 8 now predicates the statement. Lastly, (@)
PRISM rewrites the original assignment on line 9 to assign from
the temporary instead of from the SELECT statement.

After query motion, PRISM decouples procedural and relational
code, exposing larger regions of procedural code for UDF outlining.
It is not always possible to hoist a SELECT statement outside of
control flow (e.g., a loop that iteratively executes a SELECT that uses
loop variables). In these cases, the DBMS falls back to inlining.

2 Although PRISM performs its optimizations on its intermediate representation, we
show the transformations on PL/pgSQL UDFs in our figures.

CREATE FUNCTION getManufact(item_id INT) RETURNS CHAR(50)

AS $$

DECLARE
1 man CHAR(50) = '';
2 cntl INT;
3 cnt2 INT;
4 temp CHAR(50); @

BEGIN
5 cntl = [ (SELECT COUNT(*) FROM ..); |
6 cnt2 =| (SELECT COUNT(*) FROM ..); |
7 temp =] (SELECT (SELECT i_manufact FROM ..)

WHERE cntl > 0 AND cnt2 > 0); @
8 IF (cntl > @ AND cnt2 > 0) THEN >
9 man = | temp; I (SELECT i_manufact
FROM item (©)

10 ELSE @ WHERE i_item sk = item id);
11 man = ‘outdated item';
12 END IF;
13 RETURN man;

END; $$ LANGUAGE plpgsql;

Figure 3: Query Motion — Hoisting SELECT statements outside of control
flow (loops, conditionals) to expose larger code regions for outlining.

4.2 Region-Based UDF Outlining

With query motion, PRISM hoists SELECT statements above the
procedural code, preparing the procedural code for UDF outlining.
Although PRISM could inline the UDF at this stage, it is better to
perform outlining for two reasons. First, outlining the procedural
code into opaque function calls prevents the DBMS from inlining
the functions, thereby reducing the number of LATERAL joins in the
generated code and leading to more straightforward queries for
the DBMS to optimize and execute. Second, after outlining, PRISM
compiles the procedural code, making it an order of magnitude
faster than if it were inlined (as we will show in Section 6.4). As a
consequence, outlining as much procedural code as possible from
the UDF is crucial to achieving high performance.

Outlining the maximum amount of procedural code into sep-
arate functions is non-trivial for several reasons. Query motion
cannot hoist all SELECT statements, leaving some embedded inside
procedural code blocks. Compiling these SELECT statements would
hide them from the query optimizer, resulting in slow, iterative
query plans [46], so PRISM leaves them for inlining. Yet, embedded
SELECT statements (i.e., relational code in an IF/ELSE block) should
only prevent outlining of the smallest surrounding code block (i.e.,
the IF/ELSE), not the other code blocks. Next, arbitrary UDF code
may have multiple entry or exit points (multiple predecessor or
successor blocks in the CFG), complicating code extraction. Lastly,
PRISM should extract the largest possible procedural code at a time,
minimizing the number of opaque function calls into and out of the
UDF and exposing longer code sequences for compiler optimization.

The key insight necessary in addressing these challenges is to
use a region-based approach to UDF outlining. As shown in Figure 2,
PRISM represents UDFs as a program structure tree (a hierarchy
of program regions) that represent structured control flow as a
composition of four region types: (1) sequential, (2) conditional,
(3) loop, and (4) leaf. Regions have precisely one entry and exit
point [1, 23], ensuring that PRISM can extract any region into its
own function. Further, PRISM handles embedded SELECT statements
by never outlining a region if it contains another SELECT inside of
it (including in its subregions).

To maximize the amount of extracted code with region-based
UDF outlining, PRISM employs a recursive algorithm (Algorithm 2)



Algorithm 2: Region-Based UDF Outlining

Function udfOutlining (UDF f; R region):
if not region.containsSELECT() then
outlineBlocks (f, region.getBlocks());

else
if not region.isSequential(); then
forall subregion « region.getSubregions() do
| udfoutlining(f, subregion);
else
Q queuedBlocks « 0;
forall subregion < region.getSubregions() do
if not subregion.containsSELECT() then
| queuedBlocks.insert(subregion.getBlocks());
else
outlineBlocks (f, queuedBlocks);
queuedBlocks.clear();
udfoutlining(f, subregion);
outlineBlocks(f, queuedBlocks);

that traverses the UDF’s regions in a top-down manner. If a region
does not contain a SELECT, the algorithm outlines all its blocks
(including those of its subregions) into a new function. Otherwise,
the algorithm considers the subregions, attempting to outline as
much code as possible. If the region is not sequential, Algorithm 2 is
called recursively on the subregion. PRISM treats sequential regions
differently by outlining the longest sequence of SELECT-free regions
together (since SELECT statements are guaranteed to start a new
region). The algorithm achieves this by maintaining a queue of
basic blocks and appends each region’s blocks to the queue until it
encounters a region containing a SELECT statement. At this point,
the algorithm flushes the queue of basic blocks, outlining them into
a new function, and the algorithm continues.

Figure 4 illustrates the outlining process for our example UDF.
First, @) Algorithm 2 identifies the largest region (lines 8-14) eligi-
ble for outlining. PRISM uses liveness analysis [1] to track variables
entering the region (cnt1, cnt2, temp) and exiting the region (man).
PRISM extracts this region into a separate function, with the enter-
ing variables becoming input arguments and the exiting variables
becoming return values; PRISM creates user-defined types to handle
multiple return values, similar to Aggify [20]. Next, @) the algo-
rithm transpiles the extracted function to a C++ program, compiles
it using clang/gcc, and then dynamically links it into the DBMS.
Lastly, ) the system removes the outlined region from the UDF
and replaces it with a call to the compiled function. The extracted
region becomes opaque to the query optimizer, resulting in queries
that are simpler for the DBMS to optimize.

4.3 Instruction Elimination

Although region-based UDF outlining reduces UDF complexity, the
resulting function still contains instructions that will produce a
LATERAL join with inlining. Thus, PRISM must eliminate as many
instructions as possible to produce simple, LATERAL-free queries that
are straightforward to optimize. The challenge lies in how PRISM
eliminates instructions while maintaining the UDF’s correctness
and not introducing performance regressions.

We refer to each line of code in the UDF as an instruction and
embedded queries in the UDF as SELECT statements. An instruction
is eligible for elimination if it is dead (i.e., an instruction that does
not affect the program’s result). Therefore, PRISM must ensure
that no other instructions in the program depend on it by tracking
whether an instruction updates the state of a variable that is not

CREATE FUNCTION getManufact(item id INT) RETURNS CHAR(50)

AS

DE(E:RE CREATE FUNCTION outlinedPiece
man CHAR(50) = '* (cntl INT, cnt2 INT, temp CHAR(50))
cntl INT; RETURNS CHAR(50) AS $$
cnt2 INT; DECLARE

rwNR

temp CHAR(50); man CHAR(50) = '';

BEGIN

cntl = | (SELECT COUNT(*) FROM) ..;
cnt2 = | (SELECT COUNT(*) FROM) ..;

7 temp = [ (SELECT (SELECT i_manufact FROM ..) ..); |

IF (cntl > © AND cnt2 > 0) THEN
man = temp;

ELSE
man = ‘outdated item';

END IF;

o wn

NouaswNn R

RN man;
END; $$ LANGUAGE plpgsql;

8| [IF (cntl > 6 AND cnt2 > 0) THEN _—
9 man = temp; out\
10 ELSE Y @ compitation l @?

1 man = ‘outdated item';
12 END IF;
13 RETURN man;

10116010
14 | [ RETURN outlinedPiece(cntl, cnt2, temp); | (3) 00100001
11116010

END; $$ LANGUAGE plpgsql;

Figure 4: Region-Based UDF Outlining - Finding the UDF’s largest
procedural code regions and extracting them into functions for compilation.

used by any subsequent instructions. PRISM accomplishes this
by taking advantage of the key property of SSA form: that each
variable is assigned exactly once in the entire program. Therefore,
to eliminate an instruction (i.e., y = f(x)) from a UDF, PRISM
replaces every use of a variable with its definition (i.e., y with f(x)),
eliminating the variable (i.e., y) from the program and making the
defining instruction redundant.

When a variable has multiple uses, it introduces an important
optimization decision. PRISM could duplicate the expression in
the program, removing the instruction and reducing the number
of LATERAL joins. Yet duplicating the expression may result in the
DBMS evaluating the expression multiple times and performing
worse than the original UDF. On the other hand, by not duplicating
the expression, the UDF will still contain instructions that will
result in complex subqueries with LATERAL joins after inlining.

PRISM addresses this trade-off by considering the number of
uses and the cost of evaluating the expression. If a variable has one
use, PRISM replaces it with the definition, saving a LATERAL join
in the inlined UDF without causing regressions. However, when a
variable has multiple uses, PRISM will treat it differently depending
on whether the expression is a SELECT statement. If the expression
is not a SELECT, then PRISM always duplicates it, relying on the
DBMS’s common-subexpression elimination (CSE) pass (available
in both DuckDB [9] and SQL Server [46]) to identify the duplicated
expression during query optimization and evaluate it only once.

For SELECT statements, PRISM chooses whether to duplicate the
expression depending on the target DBMS that will execute the
UDF. For DBMSs that unnest arbitrary queries [42] (e.g., DuckDB),
PRISM does not perform query duplication. But for DBMSs that only
unnest LATERAL-free subqueries (e.g., SQL Server), PRISM applies
query duplication, minimizing the UDF complexity as much as
possible to enable unnesting. Only three out of 29 UDF-centric
queries in our experimental analysis in (discussed in Section 6.5)
require PRISM to decide whether to duplicate SELECT statements.

Algorithm 3 contains PRISM’s instruction elimination method. If
an instruction defined by a SELECT has multiple uses and the DBMS
unnests arbitrary queries [42], then PRISM does not eliminate it.
Otherwise, the algorithm replaces every use of the instruction
with its definition and removes the defining instruction from the
UDF. It skips instructions that reference themselves (i.e., a cyclic
dependency) to ensure termination.

Figure 5 illustrates the instruction elimination process for the
motivating example. First, PRISM replaces the uses of @) cnt1 on



Algorithm 3: Instruction Elimination

Function InstructionElimination (UDF f):

changed « True;

while changed do

changed « False;

worklist < f.getInstructions();

forall I «— worklist do

U « I.getUses()

if I € U then
‘ continue;

if U.size() > 1and I.getRHS().isSELECT() then

if DBMS. canUnnestArbitraryQueries() then
‘ continue;

forall U « I.getUses() do

changed « True;

U .replaceUsesWith(I.getLHS(), I.getRHS());

worklist.insert(U);

return changed;

lines 6-7 with its definition and then (2) does the same for cnt2.
Next, (3) Algorithm 3 replaces temp on line 7 with its definition on
line 6. The last step (@) removes all dead variables from the UDF.
Through instruction elimination, PRISM collapses the entire
UDF into a single RETURN instruction, resulting in a LATERAL-free
subquery after inlining. Since DuckDB unnests arbitrary queries,
PRISM skips code duplication in step (@) since cnt1 and cnt2 have
multiple uses. After instruction elimination, PRISM removes as
many of the instructions in the UDF as possible, leaving the UDF
in a much simpler form (in almost all cases, as a single RETURN
instruction), which is easier for the DBMS to optimize and execute.

4.4 Subquery Elision

Whenever possible, PRISM collapses UDFs into a single RETURN
instruction to ensure LATERAL-free queries after inlining. However,
inlining still wraps UDFs in subqueries that complicate query op-
timization and execution. To overcome this, PRISM performs sub-
query elision to replace the original UDF call with its return value,
sidestepping the inlining process entirely and avoiding the intro-
duction of an unnecessary subquery.

Figure 6 illustrates subquery elision for our motivating example.
Instead of inlining the UDF and generating a subquery (i.e., SELECT
outlinedPiece( ...)), @ the system directly substitutes the return
value into the calling query. Although our experiments found that
FROID already performs subquery elision whenever possible, to the
best of our knowledge, we are the first to identify this optimization
as a necessary step for effective UDF optimization.

4.5 Predicate Hoisting

The last challenging scenario for UDF optimization is when queries
invoke a UDF in their WHERE clause. These queries are problematic
because the DBMS’s optimizer cannot push UDF predicates down
into the leaves of a query plan for data-skipping. Without such
data-skipping optimizations, the DBMS falls back to scanning entire
tables and evaluating the UDF predicate for each row.

There are two main reasons why these UDFs are difficult to
automatically optimize. Foremost is that these predicates often
use IF/ELSE blocks to filter tuples, which are not always boolean
functions. For example, the query in our example in Figure 1 checks
whether the UDF’s return value is equal to the string ’CompanyX’.
The second reason, is that existing optimizations obfuscate such

CREATE FUNCTION getManufact(item id INT) RETURNS CHAR(50)
AS $$

DECLARE

1 temp CHAR(50);

2 cntl INT; @

3 cnt2 INT;

BEGIN @

4 Ic‘nt] = (SELECT COUNT(*) FROM ..); I

5| [cntz = (seLecr couwr(+) Frow ..); |

6 |, | temp = (SELECT (SELECT .. FROM ..) WHERE cntl > 6 AND cnt2 > 6); |

7 ||| RETURN outlinedpiece(cnti, cnt2, temp); |

8 RETURN outlinedPiece(| (SELECT COUNT(*) FROM ..),
(SELECT COUNT(*) FROM ..),

(SELECT (SELECT .. FROM ..) WHERE | (SELECT COUNT(*) FROM ..) > 0

AND (SELECT COUNT(*) FROM .. > 0

END; $$ LANGUAGE plpgsql;

Figure 5: Instruction Elimination — Replacing each use of a variable
with its definition, eliminating the instructions in a UDF, collapsing it down
to a single RETURN instruction.

CREATE FUNCTION getManufact(item id INT) RETURNS CHAR(50) UDF
AS $$
DECLARE
BEGIN
1 RETURN | outlinedPiece((SELECT COUNT(*) FROM ..),

(SELECT COUNT(*) FROM ..),
(SELECT (SELECT i_manufact FROM ..) ..));

END; $$ LANGUAGE plpgsql;

Inject
Return Value @

SELECT ws_item_sk SQL
FROM (SELECT ws_item_sk, COUNT(*) AS cnt
FROM web_sales
GROUP BY ws_item sk
ORDER BY cnt DESC, ws_item_sk
LIMIT 25,000) tl1

WHERE I getManufact(ws item sk) l \ 4

outlinedPiece((SELECT COUNT(*) FROM ..),
(SELECT COUNT(*) FROM ..),
(SELECT (SELECT i manufact FROM ..) ..));

= 'CompanyX';

Figure 6: Subquery Elision — Replacing the UDF call with its return value,
bypassing UDF inlining and the corresponding subquery.

predicates: the IF/ELSE logic is either hidden from the optimizer
with UDF outlining or muddled with LATERAL joins after inlining.
PRISM overcomes these challenges with predicate hoisting by
analyzing a UDF and then expressing it as a boolean predicate that
injects into a query’s WHERE clause. As shown in Algorithm 4, PRISM
first identifies all program paths to each RETURN instruction. It then
converts each path through the program into a conjunctive predi-
cate and disjuncts the predicates from each path together. PRISM
resolves each predicate’s variables by following use-def chains be-
fore conjuncting them together. PRISM expresses each path as a
boolean predicate by generating a predicate new that compares the
return value with an unseen parameter ¢ using an operator <op>
that the DBMS could exploit for data skipping (i.e., = <, <, >, 2).
Then, for every condition that it encounters along the path to the
RETURN, PRISM conjuncts the condition with new. For the five possi-
ble choices of <op>, PRISM generates a boolean UDF. When a query
invokes the UDF from the WHERE clause, PRISM substitutes the cor-
responding predicate in place of the original UDF call. PRISM’s
predicate hoisting implementation ignores UDFs with loops (since
they are not straightforward to express as filters). Although PRISM



Algorithm 4: Predicate Hoisting

Function PredicateHoisting (UDF f):
if f.containsLoop() then
| return
pred « True;
forall I « f.getInstructions() do
if I.isReturnStatement() then
forall P « getPathsToReturn(I) do
new « (I.getRHS() <op>t)
new < new A [ A\ getCondsOnPath(P) |
pred < pred V resolveVarsToArguments (new)
return pred;

could exclusively outline loop regions before predicate hoisting,
this is outside of the scope of PRISM and we defer it as future work.

Figure 7 illustrates our approach for FROID’s TPC-H Q1 UDF ex-
ample [46]. (@) PRISM rewrites the UDF to return a BOOLEAN instead
of an INT value. Next, PRISM adds an additional input argument to
the UDF: the ¢ variable is the same type as the function’s original
return value (INT). Then, @) PRISM translates the UDF into an equiv-
alent predicate (disjuncting the two paths through the UDF that
reach the RETURN instructions on lines 4 and 6). Next, (@) the system
rewrites the query’s WHERE clause to pass the compared value 1 as
the new parameter t to the UDF. Lastly, (5) PRISM substitutes the
boolean predicate into the WHERE clause and then (§) the DBMS’s
optimizer performs logical rewrites to simplify the predicate.

For the query shown in Figure 7, predicate hoisting improves
performance by 21.7x on DuckDB and 50.8x on SQL Server.

5 IMPLEMENTATION

We now discuss details about our implementation.

Nested Lateral Joins in DuckDB: We encountered binder er-
rors with DuckDB when executing PRISM’s inlined UDFs, as the
DBMS lacked support for nested queries containing LATERAL joins.
Unfortunately, this feature is needed to implement UDF inlining.
To overcome this challenge, we implemented nested LATERAL joins
in DuckDB [3]. We modified DuckDB’s binder to correctly bind,
plan, and unnest LATERAL joins in subqueries. Our patch [3] to add
UDF inlining to DuckDB was released in DuckDB v0.9 [41].

Integration into DuckDB: We implemented PRISM as a 7000-
line C++ statically linked extension for DuckDB. It includes a
PL/pgSQL front-end, intermediate representation, and code gen-
erator for compiled code fragments. When a user issues a CREATE
FUNCTION command from the DuckDB shell, our extension inter-
cepts it and uses libpgquery [7] to parse the UDF into an abstract
syntax tree (AST). Next, PRISM translates the AST into its IR us-
ing DuckDB’s binder to resolve expressions and table aliases from
the catalog. During this process, PRISM create a temporary table
in DuckDB’s catalog containing the UDF’s variables as columns,
enabling expressions that refer to program variables to bind cor-
rectly. PRISM compiles outlined UDF pieces to machine code by
transpiling them to C++ functions. Transpilation occurs by walking
the IR, resolving each bound DuckDB expression to a correspond-
ing C++ function using the catalog, and emitting the code as part
of a new DuckDB extension. Our system then invokes clang to
compile and dynamically link the new extension into the DBMS.
Our implementation inlines predicates or expressions as DuckDB
macros. PRISM then inlines UDFs containing multiple instructions
using Apfel [25].

CREATE FUNCTION isShippedBefore(shipdate DATE, I UDF

duration INT, stdatechar VARCHAR(10),| t INT) @
wernes (7] [so0ewt] ©
AS $$

DECLARE

1 stdate DATE = CAST(stdatechar AS DATE);

2 newdate DATE = DATEADD(stdate, duration);
BEGIN

3 IF (shipdate > newdate) THEN

4 RETURN 0; @

5 ELSE

6 RETURN 1;

7 END IF;

8 RETURN ((t = 0) AND (shipdate >
DATEADD (CAST (stdatechar AS DATE), duration))
OR (t = 1) AND NOT (shipdate > N
DATEADD (CAST (stdatechar AS DATE), duration)));
END; $$ LANGUAGE plpgsql;

©

SQL
SELECT ..
WHERE isShippedBefore(l_shipdate, -90, '1998-12-01') = 1;

WHERE isShippedBefore(l shipdate, -90, '1998-12-01', 1); l

WHERE ((1 = 0) AND .. OR (1 = 1) AND NOT
(1_shipdate > DATEADD(CAST('1998-12-01' AS DATE), -90)));

NO NGO

| WHERE 1_shipdate <= 1998-09-02; |

Figure 7: Predicate Hoisting — Analyzing loop-free UDF predicates to
rewrite them as boolean formulae substituted into the WHERE clause, making
data-skipping optimizations transparent to the query optimizer.

Fixing a Bug in Aggify: Cursor loops in UDFs are common
and prevent the DBMS from inlining them. Microsoft introduced
Aggify in 2020 to rewrite cursor loops into equivalent custom ag-
gregate functions that are eligible for inlining [20]. To support UDFs
containing cursor loops (i.e., UDFs 8 and 14 from ProcBench [21]),
we implemented Aggify in PRISM. But we encountered a bug where
UDFs containing cursor loops produced incorrect results when the
cursor loop executes for zero iterations. The original Aggify algo-
rithm returns NULL in this case, which is incorrect when the result
set is empty. Thus, we modified Aggify’s algorithm to introduce an
explicit check (via a CASE statement) in the rewritten UDF.

Permissions & Security: Although our implementation of
PRISM in DuckDB does not check permissions or consider security,
a commercial DBMS could safely adopt our techniques. PRISM com-
bines two features, UDF inlining, and UDF compilation, that already
exist in commercial DBMSs. By relying on these existing DBMS
features, PRISM could be safely integrated and ensure correctness
with respect to permissions and security.

6 EXPERIMENTAL ANALYSIS

We now present an evaluation of PRISM in DuckDB [45] (commit
53dc13d with a patch applied to support parallel CTEs [24]) and
Microsoft SQL Server 2022. By integrating PRISM into DuckDB,
the DBMS natively executes UDFs after registering them with the
CREATE FUNCTION command. To compare against inlining, we used
Apfel [25] to generate the inlined UDF code for DuckDB. Since
Apfel uses a different strategy than FROID, sometimes it generates
slower queries than FROID. In these cases, we manually rewrite the


https://github.com/duckdb/duckdb/commit/53dc13d
https://github.com/duckdb/duckdb/commit/53dc13d
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Figure 8: ProcBench (Single-Threaded) — Single-threaded execution times for DuckDB and SQL Server for the ProcBench queries with inlining (“Baseline”)
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and PRISM. DuckDB was executed with 32 threads to avoid a known bug with non-terminating queries [8], and SQL Server was run with the maximum
degree of parallelism available (maxDOP=80). SQL Server results are displayed normalized, and queries with a 10X speedup or greater are displayed log-scale.

queries to ensure a fair comparison. On SQL Server, we manually
translate the optimized UDFs produced by PRISM from PL/pgSQL
to Microsoft’s T-SQL syntax. We then use SQL Server’s “native com-
pilation” feature to compile outlined UDFs to machine code [40].
We then inline the optimized UDF using SQL Server’s implemen-
tation of FROID [6, 46], rewriting the UDF to use a single RETURN
instruction as required to ensure that the DBMS performs inlining.
We performed our evaluation on a machine with a dual-socket
20-core Intel Xeon Gold 5218R CPU (20 cores per CPU, 2x HT),
192 GB DDR4 RAM, and a 960 GB NVMe SSD. We ran DuckDB on
a single-socket with 32 threads to avoid a known bug with non-
terminating queries [8] and use 80 threads for the maximum degree
of parallelism (maxDOP) on SQL Server. We use the default index
configuration for all workloads, and build additional column-store
indexes [34] on every table on SQL Server. For each DBMS, we
tune their configuration knobs to improve performance, pre-warm
the buffer pool, and refresh statistics. We perform two warmup
runs of each query and then five hot runs (with minimal observed
variance), reporting the average execution time of the five runs.

6.1 Workloads
We first describe the workloads that we use in our evaluation:

SQL ProcBench: Microsoft released the SQL ProcBench in
2021 [21] as the first UDF-centric benchmark modeled after real-
world UDFs on Azure SQL Server. ProcBench is based on the TPC-
DS benchmark and contains 24 queries that invoke scalar UDFs.
We use a scale factor of 10 (%10 GB). We run 17 of the 24 queries,
ignoring queries that use table-valued functions (TVFs) or UDFs
invoked from stored procedures. We also skip queries Q8 and Q14
on SQL Server as these queries invoke UDFs with cursor loops.
Aggify rewrites these cursor loops to custom aggregate functions
that we could not compile on the Linux version of SQL Server 2022.

TPC-H FROID: We also evaluate FROID’s variant of TPC-H
that manually rewrites 12 queries from the benchmark to use scalar

Table 1: Overall Speedup of PRISM (Single-Threaded) — Average and
maximum speedup of PRISM for each DBMS, benchmark combination.

Avg Speedup Max Speedup

(Without Outliers) | (With Outliers)

DuckDB (ProcBench) 1.29%x 2270.22%
SQL Server (ProcBench) 298.73% 2997.92%
DuckDB (TPC-H) 17.69% 43.68x

SQL Server (TPC-H) 135.83% 1053.32%

UDFs. These UDFs have interesting properties that are relevant to
our analysis. First, the UDFs are simpler than in ProcBench. For
example, TPC-H UDFs are purely procedural or relational, whereas
ProcBench mixes procedural code and SELECT statements. They also
factor out expressions into reusable functions rather than complex
business logic. Lastly, the queries invoke UDFs from the WHERE
clause to filter tuples, thereby blocking data skipping optimizations
unless the DBMS uses predicate hoisting.

6.2 Overall Speedup

Our first experiment seeks to determine the overall benefit that
PRISM achieves for UDF-centric queries. We measure the average
and maximum speedup of PRISM on the ProcBench and TPC-H
benchmarks on DuckDB and SQL Server running on a single CPU
thread. Although PRISM improves overall performance significantly
(often by orders of magnitude), there are “outlier” queries that pro-
vide a much larger benefit than others. We report average speedups
without these outliers to provide a more accurate assessment.

The results in Table 1 show the average and maximum speedups
with PRISM described above. DuckDB delivers a 1.29% speedup on
ProcBench by eliminating LATERAL joins and subqueries (and their
corresponding hash joins after unnesting). The maximum speedup
0f 2270.22x is due to DuckDB introducing a large cross-product into
the query plan during unnesting. SQL Server improves by an aver-
age of 298.73% over inlining since PRISM generates UDFs that the
DBMS unnests and evaluates efficiently with joins. The maximum



Table 2: ProcBench Subquery Unnesting — For each system (FROID,
PRISM), applied to each DBMS (SQL Server, DuckDB), the table indicates
whether the DBMS unnests all subqueries in a given Bench query (ie.,
replaces them with join operators).

ProcBench Queries

Technique  Q1Q5 Q6 Q7 Q9%a Q9b Q12 Q13 Q15 Q17 Q18 Q20a1 Q20a2 Q20b1 Q20b2
SOLS Inlining v Vv v v
QLServer  "pRISM VWV XV VWV VY K v v v v
DuckDB Inlining VvVVVV VVVVIVV V VvV vV
ue PRSM VVVVV VVVVVVY V VvV V

speedup is 2997.92Xx by replacing an expensive subquery with a
hash join. For TPC-H, DuckDB delivers an average 17.69X speedup
through better data skipping and avoiding LATERAL joins. The maxi-
mum speedup is 43.68% and 1053.32X by exposing a low-selectivity
predicate to the optimizer in TPC-H Q12 and Q6, respectively. SQL
Server delivers a 135.83% speedup for TPC-H by exploiting data
skipping and “batch mode” predicate execution [34].

6.3 Single-Threaded Performance (ProcBench)

We now evaluate DuckDB and SQL Server on single-threaded exe-
cution with ProcBench. We run with a single thread to control for
the effect of parallelism. We show in Section 6.6 that we observe
similar results when running multi-threaded. ProcBench contains
complex UDFs that inlining translates to subqueries with LATERAL
joins. Therefore, ProcBench stresses PRISM’s ability to simplify
UDFs and produce easy-to-unnest, fast-to-execute queries.

DuckDB ProcBench: The results in Figure 8a show DuckDB’s
performance improvement with PRISM. We use a log-scale axis
for queries that are at least 10x faster (i.e., Q14 and Q17), and
a linear scale for the remaining queries. Q14 is 18X faster with
PRISM, as the UDF contains a loop that is faster to execute as a
compiled outlined function compared to an inlined recursive CTE.
We study the performance improvement for Q14 in Section 6.4. Q17
executes 2270.8x faster with PRISM than the inlined UDF because
the latter introduces a slow cross-product join into the query plan
during unnesting. The cross-product generates 250 billion tuples
which enter the probe side of the hash join, taking over 56 minutes
to finish. By comparison, PRISM optimizes the UDF, eliminating
all LATERAL joins and subqueries, avoiding the cross-product and
executing orders of magnitude faster (terminating in ~1.5s).

For the remaining queries, PRISM provides a speedup of 1.02—
1.62x (on average 1.29x). After inspecting the query plans with
EXPLAIN ANALYZE, we find the extra runtime is due to executing
additional join operators introduced when DuckDB unnests sub-
queries and LATERAL joins. By comparison, PRISM eliminates these
subqueries and joins, resulting in faster query plans.

SQL Server ProcBench: We next measure PRISM’s effect on
SQL Server. We report the speedup of PRISM over the baseline in
Figure 8b rather than reporting absolute numbers. We follow the
same convention as above, reporting queries with over 10X improve-
ment using a log-scale and the remaining queries with a linear scale.
Our first observation is that most ProcBench queries (eight out of
15) are at least an order of magnitude (on average 559.1x) faster
with PRISM relative to the baseline. The source of this improvement

10

Table 3: Hardware Counters for ProcBench Q14 (Single-Threaded) -
We use PerfEvent [37] to measure hardware-level counters, reporting their
values for Q14 after inlining and compilation after outlining with PRISM.

‘ Inlined Compiled Ratio
Execution Time (ms) 3,707 234 15.82%
Instructions Retired 9,727,134,114  2,103,326,192 4.62%X
Branches 1,711,551,933 513,643,284 3.33%
Branch Mispredicts 5,426,332 789,462 6.87%
LLC Misses 215,522,377 4,134,696  52.12X

is that SQL Server cannot unnest the subqueries generated by inlin-
ing but unnests PRISM’s simplified UDFs. Through unnesting, the
DBMS replaces ineflicient, iterative subqueries with set-oriented
join operators that provide an algorithmic advantage and faster
query performance. Our analysis of query plans for the ProcBench
(Table 2) shows that SQL Server only unnests four out of 15 of
FROID’s inlined queries, compared to 12 with PRISM. Contrast
this with DuckDB, which unnests all ProcBench queries [42, 44].
By simplifying PRISM’s generated UDFs and hiding as much code
as possible through outlining, SQL Server unnests the simplified
queries, resulting in orders of magnitude faster query plans. For
the remaining queries, PRISM is faster by avoiding unnecessary
LATERAL joins (on average 1.12X faster). The exception is Q18, which
is slower with PRISM due to duplicating SELECT statements. We
discuss the trade-offs of such duplication in Section 6.5.

6.4 Case Study: ProcBench Q14

To understand why Q14 is an order of magnitude faster with PRISM
compared to the baseline, we perform a microarchitectural anal-
ysis of the query performance, instrumenting DuckDB to collect
hardware counters with PerfEvent [37]. We run Q14 one million
times with random input data first with inlining and then again
as a compiled function using PRISM. The performance gap arises
because Q14 contains a loop that inlining converts into a recursive
CTE and LATERAL joins, but PRISM outlines and compiles this loop.

Table 3 reports the recorded hardware counters from our ex-
periment. First, the overall execution time is reduced by 15.82%
with compilation due to a decreased instruction count (4.62x fewer
retired instructions), and fewer branch mispredictions. However,
the performance gap is most apparent when observing the number
of last-level cache (LLC) misses, stalling the CPU 52.12X as often
to fetch data into the CPU’s caches. The number of cache misses
increases due to the use of SQL features to simulate procedural
constructs. The recursive CTE populates and clears working ta-
bles to emulate looping functionality, and the LATERAL joins are
unnested and execute as hash joins. The DBMS incurs more LLC
misses from building and accessing these intermediate structures.
By comparison, PRISM outlines the UDF into a separate function
and invokes an optimizing compiler (with its own loop and memory
optimizations), translating the function to efficient machine code.

6.5 Query Duplication

For three of ProcBench’s UDF-centric queries in our experiments
(Q18, Q20b1, Q20b2), PRISM decides during instruction elimination
(Section 4.3) whether to duplicate queries (i.e., SELECT statements).
By performing query duplication, PRISM reduces the number of
LATERAL joins but the DBMS will evaluate the SELECT statement



Table 4: SQL Server ProcBench Query Duplication Execution — Single-
threaded execution times for ProcBench queries with query duplication
disabled (“Dup. Off”) and enables (“Dup. On”). We normalize execution
times with the maximum value reported as 100,000.

Execution Time | Execution Time Ratio

(Dup. Off) (Dup. On) (Off / On)
Q18 43,231 54,128 0.79%
Q20b1 74,917 100,000 0.75%
Q20b2 72,502 93,307 0.78%

multiple times in the query plan. With such duplication turned
off, the DBMS evaluates the query once but the inlined UDF will
contain LATERAL joins that may prevent unnesting for DBMSs that
cannot unnest arbitrary queries (i.e., SQL Server).

To understand the effect of query duplication on performance,
we measure the execution times for these three queries with and
without the optimization enabled. Since we originally designed
PRISM’s query duplication technique for SQL Server, we use this
DBMS for this experiment running on a single CPU thread. We
report the queries’ normalized execution time and relative perfor-
mance ratio. We also inspect the optimized query plans to determine
whether the DBMS unnests the generated subqueries.

The results in Table 4 show that the queries run 21-25% slower
with duplication enabled. The reason for this slowdown is that elim-
inating the LATERAL joins with query duplication does not affect
whether SQL Server unnests these three queries (shown in Ta-
ble 5). Although query duplication results in slower execution time
for this DBMS, we leave the optimization on by default in PRISM.
The performance benefit of unnesting (switching to an efficient
set-oriented query plan rather than a slow-iterative plan) almost al-
ways results in multiple orders of magnitude faster execution times,
which far outweigh the much smaller overhead introduced with
query duplication. After turning off query duplication, we found
that PRISM always matches or outperforms inlining. Therefore, to
avoid performance regressions, we recommend that commercial
DBMSs should run PRISM with query duplication turned off.

6.6 Multi-Threaded Performance (ProcBench)

To evaluate whether PRISM’s benefits generalize to a multi-threaded
setting, we perform the same measurements as in Section 6.3 but
with the maximum number of threads. To avoid a known bug in
DuckDB that prevents queries from terminating [8], we use a max-
imum of 32 threads in our DuckDB experiments.

DuckDB ProcBench: Comparing single-threaded and multi-
threaded performance (Figures 8a and 9a), PRISM provides similar
improvements. We attribute DuckDB’s stable scalability to its exe-
cution of physical operators in both query plans with HyPer-style
morsel-based parallelism and scheduling [38].

SQL Server ProcBench: Unlike DuckDB, PRISM’s performance
improvements are lower on SQL Server when executing queries
multi-threaded. We attribute this gap to an implementation detail of
SQL Server that forces single-threaded query plans when invoking
non-inlined UDFs [46] (i.e., the outlined UDF pieces generated by
PRISM). Hence, PRISM has a diminished benefit on SQL Server with
multiple threads. SQL Server could address this problem by provid-
ing a PARALLEL SAFE annotation (similar to PostgreSQL), allowing
outlined UDF pieces and the entire query plan to run in parallel.
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Table 5: SQL Server ProcBench Query Duplication — Whether the
DBMS unnests all subqueries in Table 4’s queries (replaces them with join
operators) with and without PRISM’s duplication optimization.

ProcBench Queries

Approach Q18 Q20b1 Q20b2
PRISM (Dup. Off) v v
SQL Server ppisM (Dup. On) v v

6.7 Progressive Optimization (TPC-H)

Lastly, we consider the impact of incrementally applying each of
PRISM’s optimizations using the TPC-H workload. As before (see
Section 6.2), we run all queries single-threaded to ensure a fair
comparison between inlining and PRISM.

DuckDB TPC-H: Figure 10a shows PRISM’s performance gains
with each added optimization. The bars are listed from left to right,
corresponding to each optimization. The leftmost bar represents the
baseline (no optimizations), with each bar incrementally applying
an additional optimization until the rightmost bar with all optimiza-
tions enabled. The leftmost eight queries invoke UDFs from SELECT
and WHERE clauses, whereas the rightmost queries (Q9, Q11, Q14,
Q22) only invoke UDFs from the SELECT clause.

Our first observation is that query execution times decrease as
PRISM applies each optimization, indicating that each technique
benefits overall performance. Additionally, the performance gap
between no optimizations (i.e., baseline) and full optimizations
is stark, ranging from 1.6-43.68x (with an average speedup of
17.69%). Considering the optimizations in order, we observe that
query motion does not affect query performance since the TPC-
H UDFs do not mix relational and procedural code. Region-based
UDF outlining eliminates LATERAL joins by extracting as much
code as possible into separate functions, improving performance by
up to 2.18X (on average by 1.43x). Instruction elimination does
not affect performance because the entire UDF code is outlined
since it is purely procedural. Next, subquery elision yields an
additional speedup of 1.78% by substituting the return value of the
UDF into the calling query without generating a subquery, thereby
saving a join operator in the unnested query plan. Lastly, predicate
hoisting has a significant effect on the leftmost eight queries (as
they invoke UDFs from the WHERE clause), providing an additional
9.94% speedup. PRISM injects equivalent predicates into the query’s
WHERE clause, enabling DuckDB to apply predicate pushdown and
skip over irrelevant blocks with zone maps. In summary, PRISM’s
optimizations are complementary and progressively improve query
performance by removing join operators from the query plan and
making data skipping optimizations transparent to the DBMS.

SQL Server TPC-H: Figure 10b shows the impact of each op-
timization on SQL Server. As with DuckDB, query motion and
instruction elimination have no effect, and subquery elision
also has no effect (since FROID already supports this optimiza-
tion). However, UDF outlining results in an average performance
degradation of 2.71X after outlining UDF predicates in the eight left-
most queries (which predicate hoisting will address). We attribute
this slowdown to SQL Server’s implementation of column-store
indexes [34] that enable the DBMS to push down expressions into
scans. After pushdown, expressions are executed in “batch mode”
(i.e., on a compressed input vector). However, SQL Server blocks
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Figure 10: TPC-H Waterfall (Single-Threaded) — Single-threaded execution times for DuckDB and SQL Server for the TPC-H queries from the FROID
paper [46]. Each bar represents the execution time for PRISM with each optimization progressively enabled. The leftmost bar represents the “Baseline” (no
optimizations), with each bar applying an additional optimization until the last one with all optimizations enabled. The leftmost eight queries invoke UDFs
from the SELECT and WHERE clauses, whereas the rightmost queries (Q9, Q11, Q14, and Q22) only invoke UDFs from the SELECT clause.

pushdown of compiled UDFs, forcing decompression, and row-
oriented execution for the UDF.

At this point, the DBMS is not exploiting data-skipping opti-
mizations, as the predicate is outlined as an opaque function call.
But after PRISM applies predicate hoisting, these filters are now
injected into the WHERE clause of the query, allowing SQL Server to
exploit both batch-mode execution and data-skipping with zone
maps, resulting in an average improvement of 350.25X for the eight
leftmost queries using UDF predicates. PRISM has no effect on
queries Q9, Q11, Q14, and Q22 because their UDFs are simple ex-
pressions invoked exclusively in the SELECT clause that FROID can
inline. Overall, with PRISM’s optimizations, SQL Server fully ex-
ploits the benefits of columnar storage, delivering multiple orders
of magnitude faster query plans (on average 203.25X over the base-
line), and for Q6 (which relies on a highly selective UDF predicate),
achieves over 1000x better performance with PRISM over inlining.

We ran this same experiment on ProcBench but did not see the
same incremental benefit. That is, each optimization has no effect
until PRISM applies subquery elision, which then unlocks all the
improvements. Only after subquery elision do the queries become
simple to unnest and faster to execute (shown in Figure 8).

7 RELATED WORK

We now discuss prior work related to our approach. We refer the
reader to Section 2 for our overview of existing UDF optimization
techniques (i.e., compilation, batching, and inlining).

Subquery Unnesting: Kim [31] introduced the first technique
to unnest subqueries. Seshadri et al. [48] extended their work by pro-
viding unnesting rules for more complex subqueries. SQL Server
models subqueries using the APPLY operator, relying on rewrite
rules to remove the APPLY operator from the query plan [10, 18].
However, this approach cannot unnest arbitrary queries [42]. In the
context of UDF inlining, Franz et al. [17] demonstrated that SQL
Server fails to unnest inlined UDFs when the generated subquery
contains nested APPLY/LATERAL operators. PRISM builds on this ob-
servation, using UDF outlining to generate LATERAL-free subqueries
wherever possible, enabling SQL to unnest many more inlined UDFs
(see Table 2) and achieve significantly improved performance.

Neumann and Kemper [42] pioneered the first algorithm to
unnest arbitrary subqueries (which DuckDB implements [44]), al-
lowing the DBMS to unnest arbitrary inlined UDFs. Our experi-
ments found that for some UDFs (i.e., Q17 from the ProcBench),
unnesting the generated subquery results in orders of magnitude
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slower performance than naively evaluating the subquery row-by-
row. Further research is necessary to unnest arbitrary subqueries
without introducing performance regressions.

Optimizing Database-Backed Applications: A related re-
search topic is lifting application logic into the DBMS. Cheung et al.
[4] use program synthesis to translate application code into SQL,
reducing data movement between the application and the DBMS,
and enabling the query optimizer to find better plans. Zhang et al.
[54] also explored program synthesis techniques to lift UDF code to
SQL. Unfortunately, synthesis-based techniques lack termination
guarantees, challenging their adoption in commercial systems [46].

In contrast, Emani et al. [11, 12] developed EqSQL, which uses
static analysis techniques to translate application code into equiva-
lent relational operations using a functional IR. Although EqSQL
significantly improves performance, FROID chose a different trans-
lation strategy, which generates simpler code [46]. More recently,
PyFROID [13, 27, 39] uses inlining-inspired techniques to translate
queries written in pandas to SQL for faster query execution.

Cross-Language Optimization: Recent academic prototypes
blur the lines between database systems and compilers. For in-
stance, LingoDB [29, 30] uses MLIR [35] to represent relational
and non-relational code as MLIR dialects, allowing cross-boundary
optimizations. Grulich et al. [19] adopt a similar approach, us-
ing GraalVM [53] to represent and optimize polyglot queries (i.e.,
queries invoking UDFs in multiple programming languages). Our
techniques complement these designs, where the DBMS applies
PRISM’s optimizations on its unified IR.

8 CONCLUSION

In this paper, we demonstrated how UDF outlining improves perfor-
mance relative to conventional UDF inlining by selectively inlining
only the portions of the UDF that are helpful for query optimization.
By combining UDF outlining with four other complementary UDF-
centric optimizations, our implementation (PRISM) achieves sub-
stantial speedups for UDF-centric queries running on DuckDB and
SQL Server due to three benefits: more effective unnesting (some-
times resulting in over a 1000X speedup), improved data skipping
(resulting in roughly a 10X speedup), and avoiding unnecessary
joins (typically resulting a 1.02-1.62Xx speedup).
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