
Active Disk Meets Flash: A Case for Intelligent SSDs

Sangyeun Cho1,2 Chanik Park3 Hyunok Oh4

Sungchan Kim5 Youngmin Yi6 Gregory R. Ganger7

1Memory Solutions Lab., Memory Division, Samsung Electronics Co., Korea
2Computer Science Department, University of Pittsburgh, USA

3Memory Division, Samsung Electronics Co., Korea
4Department of Information Systems, Hanyang University, Korea

5Division of Computer Science and Engineering, Chonbuk Nat’l University, Korea
6School of Electrical and Computer Engineering, University of Seoul, Korea

7Department of Electrical and Computer Engineering, Carnegie Mellon University, USA

ABSTRACT
Intelligent solid-state drives (iSSDs) allow execution of lim-
ited application functions (e.g., data filtering or aggregation)
on their internal hardware resources, exploiting SSD charac-
teristics and trends to provide large and growing performance
and energy efficiency benefits. Most notably, internal flash
media bandwidth can be significantly (2–4× or more) higher
than the external bandwidth with which the SSD is con-
nected to a host system, and the higher internal bandwidth
can be exploited within an iSSD. Also, SSD bandwidth is
projected to increase rapidly over time, creating a substantial
energy cost for streaming of data to an external CPU for
processing, which can be avoided via iSSD processing.
This paper makes a case for iSSDs by detailing these

trends, quantifying the potential benefits across a range of
application activities, describing how SSD architectures could
be extended cost-effectively, and demonstrating the concept
with measurements of a prototype iSSD running simple data
scan functions. Our analyses indicate that, with less than a
2% increase in hardware cost over a traditional SSD, an iSSD
can provide 2–4× performance increases and 5–27× energy
efficiency gains for a range of data-intensive computations.

Categories and Subject Descriptors
B.4.2 [Input/Output and Data Communications]: In-
put/output devices; C.4 [Performance of Systems]: De-
sign studies; C.5.0 [Computer System Implementation]:
General

General Terms
Design, Experimentation, Performance

Keywords
Data-intensive computing, energy-efficient computing, stor-
age systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS ’13 June 10–14, 2013, Eugene, Oregon, USA
Copyright 2013 ACM 978-1-4503-2130-3/13/06 ...$15.00.

1. INTRODUCTION
A large and growing class of applications process large quan-
tities of data to extract items of interest, identify trends, and
produce models of and insights about the data’s sources [1,2].
Increasingly, such applications filter large quantities (e.g.,
TBs) of semi-structured data and then analyze the remainder
in more detail. One popular programming model is Google’s
MapReduce [3] (as embodied in the open source Hadoop sys-
tem [4]), in which a data-parallel map function is generally
used to filter data in a grep-like fashion. Another builds
on more traditional database systems and makes extensive
use of select and project functions in filtering structured
records. A common characteristic is streaming through data,
discarding or summarizing most of it after a small amount
of processing.

Over a decade ago, research efforts proposed and explored
embedding of data-processing functionality within storage or
memory components as a way of improving performance for
such applications. For example, there were several proposals
for so-called “active disks” [5–9], in which limited application
functions could be executed on a disk drive’s embedded CPU
to increase parallelism and reduce reliance on host bandwidth
at marginal cost. Also, there were proposals for executing
functions on processing elements coupled with memory banks
(“active RAM”) [10, 11], with similar goals. In developing
these ideas, researchers developed prototypes, programming
models, and example application demonstrations. Although
interesting, few real systems adopted these proposals, for
various technical reasons including manufacturing complex-
ity (especially for active RAM proposals) and independent
advances that marginalized the benefits (e.g., distributed stor-
age over commodity multi-function servers [12–14], which end
up having conceptual similarities to the active disk concept).
The active disk concepts are poised for a comeback, in

the context of flash-based SSDs, which are emerging as a
viable technology for large-scale use in systems supporting
data-intensive computing. Modern and projected future
SSDs have characteristics that make them compelling points
for embedded data processing that filters/aggregates. In
particular, their internal bandwidths often exceed their ex-
ternal bandwidths by factors of 2–4×, and the bandwidth
growth over time is expected to be rapid due to increased
internal parallelism. Even without the internal-to-external
bandwidth multiplier, the rates themselves are sufficiently
high that delivering them all the way to a main CPU requires

…

…

Flash Channel #0

Flash Channel #(nch–1)

NAND Flash Array

…
H

os
t I

nt
er

fa
ce

 C
on

tr
ol

le
r

CPU
(s)CPUs

DRAM
Controller

DRAM

H
os

t

On-Chip
SRAM

On-Chip
SRAM

…

Flash
Memory

Controller EC
C

Flash
Memory

Controller EC
C

Time frame Characteristics

2007–2008 4-way, 4 channels, 30–80 MB/s R/W perfor-

mance; mostly SLC flash based;

2008–2009 8–10 channels, 150–200+ MB/s performance

(SATA, consumer); 16+ channels, 600+ MB/s

performance (PCI-e, enterprise); use of MLC

flash in consumer products;

2009–2010 16+ channels, 200–300+ MB/s performance

(SATA 6 Gbps); 20+ channels, 1+ GB/s per-

formance (PCI-e); adoption of MLC in enter-

prise products;

2010– 16+ channels; wider acceptance of PCI-e;

Figure 1: General architecture of an SSD (left): The dashed box is the boundary of the controller chip. SSD evolution with new host
interface standards (right).

substantial energy; filtering most of it near the flash channels
would avoid that energy usage.

This paper develops the case for and an architecture for the
result, which we refer to as “intelligent SSDs” (iSSDs). We
detail the relevant SSD technology characteristics and trends
that create the opportunity and discuss their architectural
consequences. Combined with analyses of ten data-intensive
application kernels, the internal parallelism (via multiple flash
memory channels) and bandwidths of modern and future
SSDs push for optimized compute elements associated with
each flash memory channel. We focus on use of low-power
reconfigurable stream processors for this role.
The performance and energy efficiency benefits of iSSDs

are substantial. We quantify these benefits and explore the
design space via analytical performance and energy models,
as well as some demonstration experiments with a prototype
iSSD. Compared to the traditional approach of executing
the entire application on a primary server CPU, the iSSD
approach offers 2–4× higher throughput and 5–27× more
energy efficiency. We show that the iSSD approach provides
much of this benefit even when compared to alternate ap-
proaches to improving efficiency of data-intensive computing,
including heterogeneous elements in the server CPU [15]
(e.g., GPUs or the same reconfigurable stream processors we
envision for iSSDs), reliance on so-called “wimpy” nodes [16],
or embedding the processing in the RAM subsystem as in
proposals discussed above. All of the bandwidth benefits
and half of the energy efficiency can only be achieved by
exploiting the SSD-internal bandwidth and avoiding the need
to move the data to other components.

2. BACKGROUND AND RELATED WORK
2.1 Active devices for data-intensive computing
The concept of “active devices”, in which limited application
functionality is executed inside a memory or storage com-
ponent, has been well-developed over the years. Active disk
designs, especially, were motivated and studied extensively.
The early proposals laid out the case for exploiting the excess
computing cycles of the hard disk drive (HDD) controller’s
embedded processor for useful data processing, especially
filter and aggregation functions. For example, Riedel et al. [9]
showed that, by aggregating the bandwidth and computing
capabilities of ten (emulated) HDDs, measured performance
improves more than 2.2×, 2.2× and 2.8× for workloads like
nearest-neighbor search, frequent set mining and image reg-
istration, respectively. Substantial benefits have also been

demonstrated for a range of other data-intensive workloads,
including database scan, select, and aggregation operations,
satellite data processing, image processing, and search of
complex non-indexed data [5,6,8,17]. Active memory system
designs (sometimes called “intelligent RAM”) have also been
proposed and studied [10,11], allowing simple functions to
transform and filter ranges of memory within the memory
system without having to move it to the main CPU.

Programming models for active disks were developed and
shown to fit such data-parallel processing tasks, addressing
both the data delivery and software safety issues; these same
models should be suitable for iSSDs. As a representative
example, Acharya et al. [5] proposed a stream-based pro-
gramming framework and the notion of sandboxed “disklets”
(disk-resident codes) for processing data ranges as they are
made available by the underlying device firmware.

Active devices have not become the norm, for various rea-
sons. In the case of active memories, complex manufacturing
issues and memory technology changes arose. In the case of
active disks, the demonstrated benefits were primarily from
parallelized data-local execution; for many data-intensive
computing activities, those benefits have instead been real-
ized by spreading stored data across collections of commodity
servers (each with a few disks) and partitioning data process-
ing across those same servers [12–14]. The same approach
has been more efficiently implemented with so-called wimpy
nodes and low-power CPUs [16], as well. But, we believe that
flash-based SSDs have characteristics (e.g., parallel channels
and very high internal bandwidths) that make “active-ness”
compelling, where it wasn’t for these other devices.

There is recent research work studying the impact of adding
active-ness to SSDs. Kim et al. [18] accelerate database scan
using simple hardware logic within an SSD. Boboila et al. [19]
and Tiwari et al. [20] perform data analytics within SSDs in
the context of HPC simulation-data analytics pipelines. Like
our work, these studies reveal the performance and energy
benefits of data processing within SSDs. Our work is unique
because we characterize and study general data-intensive
kernels, offer a detailed performance and energy modeling
framework, give prototyping results using a commercial de-
vice, and evaluate architectural trade-offs.

2.2 Architecture and evolution of SSDs
Figure 1 illustrates the general architecture of an SSD and
how SSDs have evolved with the introduction of new higher
bandwidth host interfaces [21]. Key hardware components in
an SSD are the host interface controller, embedded CPU(s),

1

10

100

10

100

1,000

10,000

100,000

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

CPU

B
an

dw
id

th
 (M

B
/s

)

C
PU

 th
ro

ug
hp

ut
 (G

H
z
×

co
re

s)

HDD

SSD

NAND flash
Host i/f

24 ch.
16 ch.

8 ch.

4 ch.

Year

Figure 2: Bandwidth trends of key hardware components.

on-chip SRAM, DRAM and flash memory controllers con-
nected to the flash chips. On top of the hardware substrate
runs the SSD firmware commonly referred to as flash trans-
lation layer (or FTL).

The host interface controller supports a specific bus inter-
face protocol such as SATA, SAS and PCI Express (PCI-e).
The host interface bandwidth has steadily increased, from
PATA (1.5 Gbps max) to SATA (3 to 6 Gbps) in desktop
systems and from SCSI (maxed out at about 5 Gbps) to SAS
(about 6 Gbps as of this writing) in enterprise applications.
PCI-e has a high bandwidth of 2 to 8 Gbps per lane and
shorter latency than other interfaces.
The CPU(s) and SRAM provide the processing engine

for running FTL. SRAM stores time-critical data and codes.
Typically, the CPU is a 32-bit RISC processor clocked at
200 to 400 MHz. Depending on the application requirements,
multiple CPUs are provided to handle host requests and flash
management tasks concurrently. DRAM stores user data
and FTL metadata, and is operated at 667 MHz or higher.

Flash memory controllers (FMCs) are responsible for data
transfer between flash memory and DRAM (or host inter-
face). They also guarantee data integrity based on an error
correction code (ECC). As NAND flash memory is continu-
ously scaled down and adopt two-bits- or three-bits-per-cell
schemes, the ECC logic has become a dominant part of an
SSD controller chip [22]. For high performance, FMCs utilize
multi-way interleaving over multiple flash chips on a shared
I/O channel as well as multi-channel interleaving.
The NAND flash memory interface has evolved from 40

Mbps single data rate to 400 Mbps double data rate; as
higher performance is desired, the bandwidth will be raised
even further [21]. Figure 2 plots the bandwidth trends of
the HDD, flash memory, SSD, host interface and CPU. The
bandwidth improvement in flash, especially resulting from
increased use of multiple memory channels (with 8–16 being
common today) for parallel data retrieval, results in much
higher raw internal and external bandwidth than HDDs.
SSD bandwidth characteristics are what lead us to ex-

plore the iSSD concept. The very high bandwidths mean
that substantial bandwidth capability and energy is required
to deliver all data to an external processing unit, both of
which could be reduced by filtering and/or aggregating within
the SSD. Indeed, modern external SSD bandwidths lag raw
internal bandwidths significantly—differences of 2–4× are
common. So, an iSSD could process data 2–4× faster just by
being able to exploit the internal data rate. Moreover, the
natural parallelism inherent in SSD’s use of multiple channels
couples well with parallelized data stream processing.

2.3 iSSD-relevant workload characteristics
iSSDs would be expected to provide benefits for data-intensive
applications that explore, query, analyze, visualize, and, in
general, process very large data sets [1, 2, 25]. In addition to
simple data filtering and aggregation, some emerging data
mining applications are characterized by substantial com-
putation. This subsection examines a number of common
data-intensive application kernels to gain insight into their
relevant characteristics.
Table 1 lists the kernels.1 We show three metrics in the

table to characterize and highlight the data processing com-
plexity and the architectural efficiency. Among the three
metrics, IPB captures the data processing complexity of a
kernel. If IPB is high (e.g., k-means), implying that much
work is needed to process a given input data, the workload
is compute-intensive. In another example, grep and scan
execute well less than ten instructions on average to process
a byte. IPB is determined primarily by the specific data
processing algorithm, the expressiveness of the instruction
set, and the compiler’s ability to produce efficient codes.
By comparison, CPI reveals, and is determined by, the

hardware architecture efficiency. On the testbed we used,
the ideal CPI is 0.20 to 0.25 because the processor is capable
of issuing four to five instructions per cycle. The measured
CPI values range from 0.60 (ScalParC and Naïve Bayesian)
to 1.7 (histogram). Compared with the ideal CPI, the values
represent at least 2× and up to 8.5× efficiency degradation.
There are three main reasons for the inefficiency: high clock
frequency (i.e., relatively long memory latency), poor cache
performance, and frequent branch mispredictions. Accord-
ing to Ozisikyilmaz et al. [26] the L2 cache miss rates of
the classification kernels in Table 1 are as high as 10% to
68%. Moreover, HOP has a branch misprediction rate of
10%, considerably higher than other workloads in the same
benchmark suite.

Another interesting observation is that kernels with a low
IPB tend to have a high CPI. Kernels with an IPB smaller
than 50 have the average CPI of 1.14 while the the average
CPI of kernels with an IPB above 50 is only 0.82. We reason
that high-IPB kernels are compute-intensive and utilize the
available functional units and reuse the data in the cache
memory relatively well. On the other hand, low-IPB kernels
spend few instructions per unit data and the utilization of
the hardware resources may slide (e.g., cache performs poorly
on streams).

Lastly, CPB combines IPB and CPI (CPB = IPB × CPI),
and is the data processing rate of a platform. Hence, it is
our goal to minimize CPB with the proposed iSSD. For the
kernels we examined, CPB ranges from less than ten (scan
and grep) to over a hundred (k-means).

3. INTELLIGENT SSDS
iSSDs offer the earliest opportunity to process data after
they are retrieved from the physical storage medium. This
section describes the iSSD—its hardware architecture and
software architecture. Feasible data processing strategies as
well as challenges to exploit iSSDs are also discussed.

3.1 Hardware architecture
The main difference in hardware between a regular SSD and

1
A few kernels were adapted to run on both an x86 and an ARM-

based simulator platform described in Section 4.3.

Name [Source] Description Input Size CPB∗ IPB† CPI‡

word_count [23] Counts the number of unique word occurrences 105MB 90.0 87.1 1.0
linear_regression [23] Applies linear regression best-fit over data points 542MB 31.5 40.2 0.8

histogram [23] Computes the RGB histogram of an image 1,406MB 62.4 37.4 1.7
string_match [23] Pattern matches strings against data streams 542MB 46.4 54.0 0.9

ScalParC [24] Decision tree classification 1,161MB 83.1 133.7 0.6
k-means [24] Mean-based data partitioning method 240MB 117.0 117.1 1.0

HOP [24] Density-based grouping method 60MB 48.6 41.2 1.2
Naïve Bayesian [24] Statistical classifier based on class conditional in-

dependence
126MB 49.3 83.6 0.6

grep (v2.6.3) Searches for a pattern in a file 1,500MB 5.7 4.6 1.2
scan (PostgreSQL) Database scan 1,280MB 3.1 3.9 0.8

Table 1: Example data-intensive kernels. Measurements were made on a Linux box with a Nehalem-class processor using Intel’s VTune.
Programs were compiled using icc (Intel’s C/C++ compiler) at -O3. Results do not include the time to handle file I/O. ∗Cycles Per Byte.
†Instructions Per Byte. ‡Cycles Per Instruction.

an iSSD is their compute capabilities; iSSDs must provide
substantially higher yet efficient compute power to translate
the raw flash memory bandwidth into high data processing
rates. In conventional HDDs and SSDs, in-storage compute
power is provisioned to meet the firmware performance re-
quirements (e.g., host command processing, block mapping,
error handling). The active disk work [5, 6, 8] optimistically
predicted that future storage controller chips (in HDDs) will
have increasingly more excess compute capabilities. How-
ever, that didn’t happen because there is no immediate merit
for a storage vendor to add higher horsepower to a device
than needed at cost. We argue that the iSSD internal archi-
tecture must be designed specially and offer both high raw
performance and flexible programmability.
There are at least two ways to add compute resources in

the SSD datapath: by integrating more (powerful) embed-
ded CPUs and by augmenting each FMC with a processing
element. While we consider both in this work, we note that
SSD designers have kept adding more flash memory chan-
nels to continue the SSD bandwidth growth. Hence, it is
necessary to scale the amount of compute power in the iSSD
according to the number of flash memory channels, motivat-
ing and justifying the second approach. This approach has
an added benefit of not increasing the bandwidth require-
ments on the shared DRAM. This work proposes to employ
a customized ASIP and a reconfigurable stream processor as
the FMC processing element, as shown in Figure 3.

The diagram in the red box shows the components inside an
FMC—flash interface, scratchpad SRAM, DMA, embedded
processor, reconfigurable stream processor and bus bridge.
Raw data from the flash memory are first stored in the
scratchpad SRAM before data processing begins. Data are
then processed by the per-FMC embedded processor (and the
stream processor). The embedded processor has a custom
instruction set for efficient data processing and small area
cost. However, as Table 1 suggests, certain algorithms may
still require many cycles for each input byte and may render
the FMC stage a serious bottleneck. For example, word
count has an IPB of 87. If the flash memory transfers data
at 400 MB/s and the embedded processor is clocked at 400
MHz, the actual achievable data processing rate would be
slowed down by the factor of 87, compared to the full raw
data bandwidth (assuming a CPI of 1)!

In order to effectively increase the FMC’s data processing
rate, this work explores incorporating a reconfigurable stream
processor, highlighted in the bottom diagram. Once config-
ured, the stream processor performs like dedicated hardware,
achieving very high data processing rates and low power [27].

On-Chip
SRAM CPUs …

H
os

t I
nt

er
fa

ce
 C

trl

CPUs

DRAM
Controller

On-Chip
SRAM

nssd_cpu cores

…

… … nch
channels

…

nch

…

Flash
Memory

Controller
hhn h

EC
C

achch
Flash

Memory
Controller

annach

EC
C

r

Memory C

Bus
Bridge

DMA Scratchpad
SRAM

Flash
Interface

Stream
Processor

Embedded
Processor

…

R0,0

RN-1,1

…

R0,0

…

ALU0

ALUN-1

R0,1

zero0 zeroN-1

zero

result
ALU0

enable

…

…

ALU0

ALUN-1

…

R0,0

RN-1,1
RN-1,0

…

ALU0

ALUN-1

RN-1,1

zero
result

ALUN-1 …

ALU0

ALUN-1

enable

Main
Controller

Config.
Memory

Scratchpad SRAM Interface

Figure 3: The organization of an iSSD’s FMC (in red box) and
the reconfigurable stream processor (bottom).

At the heart of the stream processor are an array of ALUs,
configurable connections and the main controller. An ALU’s
output is either stored to the SRAM or forwarded to an-
other ALU. How processed data flow within the processor is
configurable (by programming the “configuration memory”).
The main controller is responsible for the configuration and
sequencing of operations. Figure 4 presents three example
instances of the stream processor. For these examples, the
CPB improvement rate is 3.4× (linear_regression), 4.9×
(k-means) and 1.4× (string_match).

Data processing with the proposed FMC is expected to
be efficient. First, the stream processor exploits high fine-
grained parallelism with multiple ALUs. Second, the em-
bedded processor and the stream processor feed their data
from a scratchpad memory, not cache (i.e., no cache misses).
Third, the embedded processor has a shallow pipeline and
does not suffer from a high branch misprediction penalty like
the host CPU. Hence, the effective average CPB achieved
with the FMCs is expected to be very competitive. This
observation is revisited in Section 4.

for each stream input a
 //Compute SX, SY, SYY, SXX, SXY
 SX += a.x; SXX += a.x * a.x;
 SY += a.y; SYY += a.y * a.y;
 SXY += a.x * a.y;

add

mul add

add

mul add

mul add

a.x
a.x
a.x

a.y
a.y
a.y

a.x
a.y

for each stream input a
 for each cluster centroid k
 if (a.x-xk)^2 + (a.y-yk)^2 < min
 min = (a.x-xk)^2 + (a.y-yk)^2;

sub mul
a.x

sub mul

add
min

add

add 0

0

zero

x1,…,xk

a.y y1,…,yk
 x1,…,xk

y1,…,yk

enable

enable

for each position a and b of
 two strings A and B
 if a == b then match_count ++;
if match_count == strlen(A) then
 return true;
else return false;

cmp
a

b

add

add
0

cmp

enable
zero

0

Figure 4: Reconfigurable stream processor instances for linear_regression, k-means and string_match from left.

Beyond FMCs, further data processing can be done by the
SSD’s main embedded CPUs. The performance of the CPUs
can be scaled with the core type (e.g., ARM7 vs. Cortex-
A8), core count, and clock frequency. Because the CPUs
see data from all flash memory channels, they can perform
“wide-scope” tasks like the Reduce stage of a MapReduce job.
The performance of the embedded CPUs is limited by the
shared DRAM bandwidth, however.

3.2 Software architecture
Since an iSSD platform includes multiple heterogeneous pro-
cessor cores, its programming framework should be able to
express parallelism for heterogeneous processors. Among
many frameworks, for example, OpenCL [28] meets the re-
quirements. It not only supports data parallel executions
on each parallel device but also provides a unified program-
ming framework to coordinate heterogeneous devices and
host CPUs to collaborate. Another framework that is par-
ticularly interesting to us and that we delve further into, is
MapReduce [3]. It was developed primarily for distributed
systems and assumes individual processing units (computers)
read data from a storage device.

The MapReduce framework provides two basic primitives:
Map and Reduce. They are user specified and easy to par-
allelize and distribute on the computing elements (FMC
processors and embedded CPUs in the context of the iSSD)
with the assistance of the run-time system. In addition, the
MapReduce model matches well with the hardware organi-
zation of the iSSD as shown in Figure 5(a). Input data are
saved in flash memory prior to being transferred to FMCs.
They execute the Map phase and the intermediate results are
stored in DRAM or flash memory temporarily. The output
data are produced and transferred to the host system or flash
memory after the Reduce phase is run on the iSSD’s CPUs.

The Map and Reduce functions are assigned to the iSSD or
the host system depending on the cost and benefit projection.
The job partitioning and resource assignment are managed
by the MapReduce run-time system that is split to run on
the host system and the iSSD. We call the run-time system
“Initiator” (on the host) and “Agent” (on the iSSD), as shown
in Figure 5(b). Initiator is essentially a run-time library and
provides programmers with a programming interface to iSSDs.
It hides some iSSD details such as the number of embedded
CPUs and FMCs, the capability of stream processors, and
flash memory parameters. Agent is responsible for allocating
and scheduling Map and Reduce tasks inside the iSSD. It
communicates with Initiator through a tunneling mechanism
available in storage protocols like SATA, SAS and PCI-e

or via an object storage interface [29].2 An iSSD based
job execution scenario using the suggested framework is
illustrated in Figure 5(b).

iSSDs face an issue that was thoroughly explored in previ-
ous active disk work [5, 6, 8]: enabling applications to target
data even though legacy file systems are not aware of un-
derlying active-ness and underlying devices are not aware of
file system organization details. One approach is to use a
separate partition and direct I/O for the data, which worked
for modified databases and work for our MapReduce frame-
work. In our iSSD prototype on a real SSD (Section 4.3), this
approach is taken. Another is to modify legacy file systems
to allow applications (e.g., Initiator) to obtain block lists
associated with files, and request that they do not change for
a period of time, which can then be provided to the iSSD.
An issue for iSSDs that was not present for active disks

relates to how data is partitioned across the flash memory
channels. Striping across channels is used to provide high
streaming bandwidth, which could create difficulties for pro-
cessing of data on individual per-channel processing elements;
with striped data, no single processing element would have it
all. Fortunately, the stripe unit size is fairly large (e.g., 8KB
or 16KB) and consistent with common file system block sizes
and database page sizes [5, 6, 8]. For applications that can
process individual blocks/pages, one by one, channel striping
should present no issue for our proposed iSSD architecture.
Fortunately, almost all active disk work found this to hold for
applications of interest, which was important because of files
being partitioned into independently allocated blocks. Many
more recent data mining activities can also be arranged to fit
this requirement, given exposure of the internal block (stripe
unit) size. When it is not possible, the embedded CPUs can
still process data (more slowly), as it sees the unstriped data.

3.3 Data processing strategies with iSSDs
Allocation of Map and Reduce functions to different pro-
cessing elements affects the system performance significantly.
Therefore, one must carefully map tasks onto heterogeneous
hardware resources in an iSSD platform. This work explores
two data processing strategies: pipelining and partitioning.
Pipelining. The pipelining strategy assigns tasks to a set of
computing resources in a hierarchical manner. For instance,
Map functions could be mapped onto processors inside FMCs
and Reduce functions onto the iSSD’s embedded CPUs. As

2
There are interesting trade-offs between using a commodity legacy

interface like SATA (large installed base) and the object storage in-
terface (rich information within storage). Exploring their trade-offs
is not the focus of this paper.

MapReduce Runtime
(Initiator/Agent)

1

Mapper

Mapper

Mapper

Mapper

Reducer

Reducer

Input
data

Map
Phase

Interme-
diate data

Reduce
Phase

Output
data
DRAM
Flash
Host I/F

Embedded
CPU

DRAM
Flash

FMC Flash

MapReduce

iSSD

1 File A

File B

File C

(a)

FTL

MapReduce Runtime (Agent)

Device driver

MapReduce Runtime (Initiator)

Applications
(Database, Mining, Search)

File System

Host interface

1. Application initializes the parameters

 (i.e., registering Map/Reduce functions

 and reconfiguring stream processors)

2. Application writes data into iSSD

3. Application sends metadata to iSSD

 (i.e., data layout information)

4. Application is executed

 (i.e., the Map and Reduce phases)

5. Application obtains the result

(b)

Figure 5: Mapping the MapReduce framework to iSSD. (a) Associating MapReduce phases to iSSD hardware organization. (b) Software
structure and execution flow of iSSD.

such, a set of homogeneous processors execute their mapped
tasks in parallel and send the computed results to the next
layer of processors in a pipeline fashion. For example, FMCs
can perform pattern search in parallel. They can then pass
the matched values to the shared DRAM buffer. Next, the
iSSD’s embedded CPUs can accomplish complex operations
that require global information, such as Reduce tasks, join
in database, and sort over filtered data sets (preprocessed by
FMCs). Intermediate data are stored in temporary memory
(SRAM, DRAM or, even flash memory) and computation
results are passed to the higher level computing stages.
Because the available physical processing resources are

organized in a hierarchical manner in an iSSD platform—from
FMCs to embedded CPUs (inside the iSSD) to host CPUs—,
this data processing strategy fits nicely with the available
hardware infrastructure. However, certain applications may
not naturally and efficiently exploit this strategy (e.g., lack
of low-level parallelism needed to utilize FMCs).
Partitioning. In general, host CPUs are higher perfor-
mance than any single computing resource in the iSSD. If
we map a given data-intensive computing job entirely to an
iSSD we may end up under-utilizing the host CPUs. To fully
utilize the computing resources in both the host platform
and the iSSD, we could assign Map functions to both entities
by “partitioning” the job into properly sized sub-jobs. For
example, if the input data set is composed of 1,000 files, 400
files could be delegated to the iSSD and the remaining 600
files could be processed by the host CPUs.
For best results, we need to balance the amount of data

(computation) the host CPUs and the iSSD take based on
their performance. This decision can be made at run time
(“dynamic load-balancing”) or before the job is launched
(“static load-balancing”). For stream oriented applications,
the simple, static load-balancing would work well; this is
because the execution time of each function varies little in
stream applications.

Finally, the pipelining and the partitioning strategies can
be used in combination. In fact, combining both strategies
will likely lead to better system performance with higher
overall resource utilization. Section 5.2 discusses this point.

4. MODELING ISSD BENEFITS
This section develops models to evaluate the benefits of the
proposed iSSD approach. We take a data-centric perspective
and express performance and energy as a function of input
data size. In essence, the overall performance (or inversely,

total time) and energy are determined by the average time
and energy to process a single input byte. We will separately
discuss models for pipelining and partitioning.

4.1 Models for pipelining
Performance. A data-intensive workload may involve mul-
tiple execution phases. For example, a typical MapReduce
workload would go through three phases, namely, map, sort
and reduce. Hence, once we compute the times of individual
phases, we can combine them to obtain the overall execution
time.3 The execution time of a given phase is, simply put,
D/B, where D is the input data size and B the overall pro-
cessing bandwidth for the phase. Our performance modeling
effort accordingly focuses on computing B.

We assume thatD is sufficiently large for each phase. More-
over, B is determined primarily by the underlying hardware
architecture and the workload characteristics. Then, each
phase’s execution time is determined by D and the steady
data processing bandwidth (=B) of the system during the
phase. Riedel [8] makes the same assumptions.

With the pipelining workload mapping strategy, data being
processed go through multiple steps in a pipelined manner.
Each step can be thought of as a pipeline stage and the step
that takes the longest amount of time determines the overall
data processing bandwidth at the system level. The steps
are: (a) Data transfer from NAND flash chips to an FMC
on each channel; (b) Data processing at the FMC; (c) Data
transfer from the FMC to the DRAM; (d) Data processing
with the SSD embedded CPU(s) on the data stored in the
DRAM; (e) Data transfer from the SSD (DRAM) to the host
via the host interface; and (f) Data processing with the host
CPU(s). If the time needed for each of the above steps is
tnand2fmc, tfmc, tfmc2dram, tssd cpu, tssd2host and thost cpu,
respectively, the bandwidth is the inverse of the total time
(Ttotal). Hence, we have:

Ttotal = (1− p) · tconv +max(t∗), B =
D

Ttotal
(1)

where t∗ is the list of the time components defined above
(for steps (a)–(f)) and (1− p) is the portion of the execution
that is not pipelinable [8] using the iSSD scheme, and tconv

is the time that would be consumed with the conventional
scheme. Let us now tackle each term in t∗.

3
Tasks of different phases may overlap in time depending on how the

“master” coordinates task allocations [3].

(a) Data transfer from NAND flash chips to an FMC
on each channel. Given nch flash channels and the per-
channel effective data rate of rnand, tnand2fmc = D/nch · rnand.
We assume that data have been split onto the NAND flash
chips evenly and all data channels are utilized equally.

(b) Data processing at the FMC. Once data are re-
trieved from NAND flash chips, they are processed in parallel
using nch FMCs. Each processor at an FMC is assumed to
run at the frequency of ffmc. Furthermore, to process a
single byte, the processor would require CPBfmc cycles on
average. Hence,

tfmc =
D · CPBfmc

nch · ffmc
=

D · IPBfmc · CPIfmc

nch · ffmc
. (2)

In the above formulation, IPBfmc exposes the efficiency of
the instruction set chosen (and the compiler), CPIfmc the
microarchitecture, and ffmc the microarchitecture and the
circuit-level processor implementation.

(c) Data transfer from the FMC to the DRAM. We
introduce a key parameter α to express the amount of residual
data for further processing after FMCs finish processing a
batch of data. α can be referred to as reduction factor
or selectivity depending on the workload semantics, and
has a value between 0 and 1. The time needed to push
the residual data from the FMCs to the DRAM is, then:
tfmc2dram = α ·D/rdram. We assumed that the aggregate
data rate of the nch NAND flash channels is at least rdram,
the DRAM bandwidth.

(d) Data processing with the embedded CPU(s). Our
formulation here is similar to Equation (2).

tssd cpu =
α ·D · CPBssd cpu

nssd cpu · fssd cpu

=
α ·D · IPBssd cpu · CPIssd cpu

nssd cpu · fssd cpu
.

CPBssd cpu, fssd cpu, IPBssd cpu and CPIssd cpu are defined
similarly. nssd cpu is the number of embedded CPUs.

(e) Data transfer from the SSD to the host. If there
remains further processing after step (d), data transfer occurs
from the iSSD to the host. With a data reduction factor
β, the time to transfer data is expressed as: tssd2host =
α · β ·D/rhost, where rhost is the host interface data transfer
rate.

(f) Data processing with the host CPU(s). In the last
step, data processing with the host CPU takes:

thost cpu =
α · β ·D · CPBhost cpu

nhost cpu · fhost cpu

=
α · β ·D · IPBhost cpu · CPIhost cpu

nhost cpu · fhost cpu
,

where nhost cpu is the number of host CPUs. CPBhost cpu,
fhost cpu, IPBhost cpu and CPIhost cpu are CPB, clock fre-
quency, IPB and CPI for the host CPUs.

The above time components ((a) through (f)) are plugged
into Equation (1) to obtain the data processing bandwidth
of a particular phase in a workload. Note that the effect of
parallel processing with multiple computing resources (nch,
nssd cpu and nhost cpu) is exposed.
Finally, let us derive the bandwidth of the conventional

data processing scheme by adapting the above formulation.
Because there is no data processing within the SSD, α = β =
1 (all data will be transferred to the host). Furthermore, step

(b) and (d) are skipped, i.e., tfmc = tssd cpu = 0. With these
changes, Equation (1) applies to predicting the performance
of the conventional data processing scheme.

Energy. The main idea of our energy models is: The overall
energy is a function of input data size and energy to process
a single byte. Energy consumption of a system is the sum of
two components, dynamic energy and static energy (Etotal =
Edyn + Estatic). We assume that Estatic is simply Pstatic ·
Ttotal where Pstatic is a constant (static power); accordingly,
we focus in this section on deriving Edyn.

Dynamic energy consumption is split into energy due to
computation and energy for data transfer. That is, Edyn =
Ecomp+Exfer = D·(EPBcomp+EPBxfer), where EPBcomp is
the average energy spent on processing a single byte of input
and EPBxfer is the average energy spent on data transfer
per single byte. EPBcomp can be further decomposed into
terms that represent the contributions of different hardware
components: EPBcomp = EPBfmc + α · EPBssd cpu + α ·
β · EPBhost cpu. Similarly, EPBxfer = EPBnand2fmc + α ·
EPBfmc2dram + α · β · EPBssd2host, where EPBA2B is the
energy needed to move a byte from A to B.
To expose the processor design choices and their impact,

we can further decompose the terms of EPBcomp: EPBfmc =
EPIfmc·IPBfmc, EPBssd cpu = EPIssd cpu·IPBssd cpu, and
EPBhost cpu = EPIhost cpu ·IPBhost cpu, where EPI∗ is the
average energy per instruction, an architectural and circuit
design parameter.

4.2 Models for partitioning
Performance. With the partitioning strategy, data are
split between the iSSD and the host for processing. Hence,
D = Dissd +Dhost. Then, based on the partition, the exe-
cution time Ttotal = max(Dissd/Bissd,Dhost/Bhost), where
Bissd and Bhost stand for the data processing bandwidth of
the iSSD and the host. Clearly, the above formulation cap-
tures the importance of “good” partitioning, because Ttotal

is minimized when the execution times of the iSSD and the
host are equal. Bissd and Bhost can be easily obtained with
our formulation of Section 4.1. For example, Bhost can be
expressed as nhost cpu · fhost cpu/CPBhost cpu.

Energy. Like before, we assume that Estatic is Pstatic ·Ttotal

and focus on deriving the dynamic energy, Edyn = Ecomp +
Exfer = Dissd ·EPBissd comp+Dhost ·EPBhost cpu+Dhost ·
EPBssd2host. EPBissd comp is the average energy spent on
processing a single byte of input within the iSSD and can be
computed using our formulation for pipelining with β = 0.
EPBhost cpu and EPBssd2host were previously defined.

4.3 Validation
The basic performance modeling framework of this work was
previously validated by Riedel [8]. They compare the perfor-
mance of a single server with fast, directly attached SCSI
disks against the same machine with network-attached (em-
ulated) active disks. Because the iSSD architecture stresses
high data access parallelism inside a single device, the em-
ulation approach is too limiting in our case. Instead, we
develop and use two iSSD prototypes to validate our models
and evaluate the iSSD approach. Our first prototype is a
detailed execution-driven iSSD simulator that runs on SoC
Designer [30]. Our second prototype is built on a real SSD
product platform provided by Samsung [31]. Let us discuss
each in the following.

1 2 4 8 16

model
sim

sim (XL)

model (XL)

k-means

1 2 4 8 16

model (XL)

sim
model

sim (XL)

linear_regression

 -
 500,000

 1,000,000
 1,500,000
 2,000,000
 2,500,000
 3,000,000
 3,500,000
 4,000,000
 4,500,000
 5,000,000

0
1 2 4 8 16

sim
model

model (XL)

sim (XL)

string_match
C

yc
le

s

flash channels

 -

 500,000

 1,000,000

 1,500,000

 2,000,000

 2,500,000

 3,000,000

 3,500,000

 4,000,000

 -

 500,000

 1,000,000

 1,500,000

 2,000,000

 2,500,000

 3,000,000

 3,500,000

 4,000,000

 4,500,000

0 0

Figure 6: Comparison of cycle counts of three benchmarks obtained with our models and SoC Designer simulation. Dotted lines and
solid lines are for iSSD processing with and without stream processor acceleration (XL), respectively.

Model validation through simulation of iSSD hard-
ware. Our simulation is both functional and timing. We
describe the hardware components in Figure 3 using Sys-
temC and realistic timings. We use an existing cycle-accurate
ARM9 model to simulate embedded CPUs and FMC proces-
sors. Additionally, we build a timing-only wrapper simulation
component for reconfigurable stream processors to avoid de-
signing a full-fledged stream processor at the RTL level. This
component reads program execution traces and generates
necessary events (e.g., bus transactions) at specified times.

We have ported a MapReduce framework similar to Stan-
ford Phoenix [23] to natively run on our simulator. An
embedded CPU in the iSSD becomes a “master” and triggers
FMCs to execute Map tasks (more experimental settings in
Section 5.1). It also manages buffers in DRAM to collect
intermediate data. If the output buffer in DRAM gets full,
the embedded CPU flushes the data and triggers the FMCs
for further data processing.
Figure 6 plots how well the results obtained from our

analytical model and the simulator agree. Overall, the model
is shown to predict the performance trends very well as we
change the number of flash memory channels; performance
trends are accurately predicted at every flash memory channel
count in all examined workloads. The maximum absolute
error between the two results was 17.9% and the average
error was 5.1%.

Scan experiments with prototype iSSD. We also sepa-
rately studied how database scan is accelerated and system-
level energy consumption is saved with the iSSD approach by
porting PostgreSQL’s scan algorithm to the Samsung SSD
platform, having sixteen 40 MB/s FMCs (i.e., internal band-
width is 640 MB/s) and a SATA 3 Gbps interface (∼250 MB/s
on the quad-core system used). The SSD has two ARM pro-
cessors and 256 MB DRAM. As for software implementation,
simple Initiator and Agent were implemented in the host sys-
tem and the SSD. They communicate with each other through
a system call, ioctl() with the ATA_PASS_THROUGH parame-
ter. A SATA reserved command was used for parameter and
metadata passing. The scan algorithm is implemented into a
Map function and loaded into the code memory of the SSD.
For input data, a 1 GB TPC-H Lineitem table [32] was

written into flash memory with striping. Selectivity was
1% and projectivity was 4 bytes (out of 150 bytes). After
input data was stored, the data layout information such as
table schema and projected column was delivered to the
SSD. As soon as the host system invoked the scan function
through Initiator, the input data were read into the internal
DRAM and compared with the key value for scan operation.

iSSD parameters
rnand 400 MB/s
rdram 3.2GB/s (@800 MHz, 32b bus)
nch 8–64 with the step of 8
ffmc 400 MHz, 800 MHz

nssd cpu, fssd cpu 4, 400 MHz

System parameters
rhost 600 MB/s (SATA), 4 or 8 GB/s

nhost cpu 4, 8, 16
fhost cpu 3.2 GHz

Workload parameters—linear_regression, string_match,
k-means, scan

p 1
α 0.05 for scan; <0.05 for others;

CPBfmc 33.6, 38.8, 157.6, 4.0
CPBfmc (w/ accel.) 10.1, 28.3, 32.4, 1.0

CPBhost cpu 31.5, 46.4, 117.0, 3.1

Table 2: Parameter values used during evaluation.

Matched data items are transferred to the host periodically
by Initiator until there is no more data to be scanned.
The measured performance improvement with the iSSD

over the host system was 2.3×. Because database scan is
not compute-intensive, this performance improvement came
closely by the ratio between the SSD-internal NAND flash
bandwidth and the host interface bandwidth (640 MB/250
MB=2.56). Through careful mapping of the scan algorithm,
we were able to achieve a near-maximum performance gain
with only a single embedded CPU. In particular, scan op-
eration and FTL execution time (tens of microseconds) are
effectively hidden by data transfer time between flash memory
and the internal DRAM. Our analytical models can capture
this effect, and the performance predictions in Figure 7 agree
with our measurement result. We also measured dynamic
energy improvement (difference of current flowing from the
wall outlet to the system) of 5.2× using a multimeter.

5. QUANTITATIVE EVALUATION
To complement the prototype measurements in the previous
section, this section uses the analytical models to study the
performance and energy benefits of the iSSD approach across
a broader range of configurations. Our main focus is to prove
the concept of the iSSD and identify conditions when the
iSSD obtains the most and least benefit.

5.1 Evaluation setup
Table 2 lists the values of the parameters to plug into our
models. Hardware parameters (for the iSSD and the host plat-
form) are based on the technology trends summarized in Sec-
tion 2.2. For intuitive discussions, we focus on four selected

0

500

1,000

1,500

2,000

2,500

3,000

8 16 24 32 40 48 56 64
0

100

200

300

400

500

600

700

800

900

8 16 24 32 40 48 56 64
0

4,000

8,000

12,000

16,000

20,000

8 16 24 32 40 48 56 64

D
at

a
pr

oc
es

si
ng

 ra
te

 (M
B

/s
)

Number of FMCs

ISSD-XL

ISSD-400.

ISSD-800

HOST-SATA

HOST-4/8G

HOST-8G

HOST-SATA
HOST-4G

linear regression k-means string_match scan

Number of FMCs Number of FMCs Number of FMCs

ISSD-XL ISSD-XL ISSD-800

ISSD-400

ISSD-800

ISSD-400.

ISSD-800 ISSD-400.

HOST-*
HOST-*

0

200

400

600

800

1,000

1,200

1,400

8 16 24 32 40 48 56 64

ISSD-XL

Figure 7: Performance of selected kernels on five system configurations: HOST-SATA, HOST-4G, HOST-8G, iSSD-400, iSSD-800,
and iSSD-XL. HOST-“speed” represents a conventional, host CPU based processing scheme with the storage interface speed of “speed”
(“SATA”=600 MB/s, “4G”=4 GB/s, “8G”=8 GB/s). iSSD-400 and iSSD-800 employ FMCs running at 400 MHz and 800 MHz for data
processing. iSSD-XL uses reconfigurable stream processors for processing. iSSD-400 uses the SATA interface, iSSD-800 the PCI-e 4 GB/s
interface, and iSSD-XL the PCI-e 8 GB/s interface.

kernels that have different characteristics: linear_regression,
string_match, k-means, and scan. In terms of computation
complexity (expressed in IPB), scan is the simplest and
k-means is the most complex. Except scan, which we imple-
ment its kernel to directly run on FMCs, we ported the Map
stage of the remaining kernels to FMCs. We focus on the Map
stage of the kernels only because there are many options for
running the Reduce stage (e.g., in iSSD or host? Overlapped
or not?) and the Map stage is often the time-dominant phase
(76–99% in our examples). We use hardware acceleration to
speed up the kernels using the stream processor instances in
Figure 4. For scan, we estimate CPBs for iSSD to be 4 and
1 (with hardware support for fast matching) based on our
experiments on a real SSD platform (Section 4.3).

Throughout this section, we fix rnand to 400 MB/s to keep
the design space to explore reasonably bounded. This way,
we focus on nch, the only parameter to control the internal
raw data bandwidth of the storage. In the case of iSSD, nch

also determines the raw data processing throughput. Lastly,
we set p = 1 [8].

5.2 Results
Performance improvement potential. Figure 7 com-
pares the data processing rate of different iSSD and conven-
tional machine configurations, as we change the number of
FMCs. We assume that the host machine has eight CPUs.
iSSD configurations are shown to effectively increase the
data processing bandwidth as we add more FMCs while con-
ventional machine configurations (having equally fast SSDs)
gain little.
Interestingly, the performance of the conventional config-

urations were compute-bound except for scan. For exam-
ple, with k-means and string_match (our “compute-intensive”
kernels), the host interface speed mattered little. With lin-
ear_regression, the 4 GB/s and 8 GB/s host interface speeds
made no difference. iSSD configurations show scalable perfor-
mance in the whole FMC count range, except with scan. In
this case, the performance of iSSD-XL was saturated due to
the internal DRAM bandwidth wall (not the host interface
bandwidth) when the number of FMCs exceeded 48. By
comparison, all conventional machine configurations suffered
the host interface bandwidth limitation, making scan the
only truly storage bandwidth bound workload among the
kernels examined. Still, iSSD configurations scale the scan

throughput for the most part because the iSSD does not
transfer filtered data to the host, reducing the required data
traffic substantially. Our results clearly highlight the impor-
tance of efficient data handling with optimized hardware,
parallel data processing and data filtering.
Among the examined kernels, string_match and k-means

have an IPB larger than 50 and are compute-intensive (see
Table 1). In both cases, the data processing rate on the host
CPUs is not bounded by the host interface bandwidth at
all. Interestingly, their performance behavior on the iSSD
is quite different. k-means was successfully accelerated and
performs substantially better on the iSSD than host CPUs
with 24 or more FMCs. In contrast, string_match required
as many as 40 FMCs to outperform host CPUs. The main
reason is that the stream processor is not as effective for this
kernel as other kernels and produced a small gain of only
37% compared with the 400 MHz FMC processor (also indi-
rectly evidenced by the large improvement with the 800 MHz
FMCs). If the iSSD has insufficient resources, one would
execute workloads like string_match on host CPUs [8]. Still,
the particular example of string_match motivates us to inves-
tigate (in the future) a broader array of workload acceleration
opportunities, especially to handle unstructured data streams
efficiently.

In a conventional system, parallelism is exploited by involv-
ing more CPUs in computation. To gain further insight about
the effectiveness of parallel processing inside the iSSD (with
FMCs) as opposed to on the host platform (with multiple
CPUs), Figure 8 identifies iso-performance configurations of
the iSSD and conventional systems in two plots, each assum-
ing a different host interface speed (600 MB/s vs. 8 GB/s).
Both plots show that hardware acceleration makes iSSD

data processing much more efficient by increasing the ef-
fective per-channel throughput. Consider linear_regression
for example: When rhost is 600 MB/s, the iSSD obtains the
performance of the 16-CPU host configuration with 52 FMCs
(without acceleration) and 15 FMCs (with acceleration).
Note that there is a large difference between the maximum
raw instruction throughput between the iSSD and the host
configurations; the 4-CPU host configuration (4×3.2 GHz×4
instructions/cycle) corresponds to twice the computing ca-
pacity of the 64-FMC iSSD configuration (64×400 MHz×1
instruction/cycle). The fact that we find iso-performance
points in each column reveals the strength of the iSSD ap-

0

8

16

24

32

40

48

56

64

4 8 12 16
Number of host CPUs

N
um

be
r o

f F
M

C
s

rhost = 600 MB/s

linear_regression

scan

k-means string_match

linear_regression-XL

scan-XL

k-means-XL

string_match-XL

0

8

16

24

32

40

48

56

64

4 8 12 16
Number of host CPUs

rhost = 8 GB/s

linear_regression

scan

k-means

string_match

linear_regression-XL

scan-XL

k-means-XL

string_match-XL

Figure 8: Iso-performance iSSD (Y axis) and host (X) configu-
rations.

proach. Simple kernels like scan and linear_regression per-
form much more efficiently on the iSSD. Moreover, relatively
complex kernels like k-means will also be quite suitable for
running on the iSSD, given adequate hardware acceleration
support.

With a high-bandwidth host interface, the host CPU con-
figurations gain on performance, and hence, the curves are
pushed toward the upper-left corner. Still, the iSSD provides
robust performance with acceleration for scan, k-means and
linear_regression. With fewer than 41 FMCs, the iSSD
performed as well as 16 CPUs for these kernels.
We also gain from above results an insight that having

more powerful embedded CPUs in an iSSD (e.g., Cortex-
A8s at 1.2 GHz) will not produce equivalent cost-effective
performance benefits because they are subject to the same
architecture inefficiency issues that plague host CPUs. More-
over, with significantly more compute power in the embedded
CPUs, the shared DRAM bandwidth will become a new bot-
tleneck. Attacking data at FMCs—the front line of comput-
ing resources—appears essential for scalable data processing
in iSSDs.

Lastly, we explore the potential of applying both partition-
ing and pipelining strategies in the iSSD architecture. We
employ all computing resources, including FMCs and host
CPUs, to maximize data processing throughput. Figure 9
presents the result, assuming optimal work partitioning be-
tween the iSSD and host CPUs (i.e., the host CPUs and
the iSSD finish execution simultaneously). It is shown that
higher data processing throughput is achievable with parti-
tioning, compared with either the host only or the iSSD only
configuration. Except for scan, the maximum achievable
throughput is the sum of the throughputs of the host CPUs
and the iSSD. This is because the ample internal flash mem-
ory bandwidth (nch = 32) can feed the host CPUs and the
FMCs simultaneously. This is why data processing through-
put of nearly 1,700 MB/s is achieved with linear_regression
when the host interface bandwidth is merely 600 MB/s. In
case of scan, pipelining with the iSSD already achieves the
highest possible data throughput (12.8 GB/s) that matches
the raw flash memory bandwidth and partitioning brings no
additional benefit. In this case, the host CPUs may perform
other useful computation or enter into a low power mode.

The partitioning strategy brings practical benefits because

0

500

1,000

1,500

2,000

2,500

3,000

lin
ea
r_
re
g.

st
rin
g_
m
at
ch

k-
m
ea
ns

sc
an

lin
ea
r_
re
g.

st
rin
g_
m
at
ch

k-
m
ea
ns

sc
an

nch=32, nhost_cpu=4, rhost=600 MB/s nch=32, nhost_cpu=16, rhost=8 GB/s

host only
ISSD only

partitioning

12.8 GB/s

12.8 GB/s

8 GB/s

D
at

a
pr

oc
es

si
ng

 ra
te

 (M
B

/s
)

Figure 9: Performance of host only, iSSD only, and partitioning
based combined configuration.

partitioning is relatively straightforward when the input data
is large and the partitioning overhead becomes relatively
small. We are encouraged by our result, and specific research
issues of static and dynamic partitioning (and load balancing)
are left for future work.

Energy reduction potential. To investigate potential en-
ergy savings of the iSSD approach, we compute EPB for three
configurations: conventional host processing, iSSD without
acceleration, and iSSD with acceleration. The examined
configurations follow the setup of Section 5.1 and nch = 8.
We break down energy into key system components. In case
of host processing, they are: CPUs, main memory, chipset,
I/O bus and SSD. For iSSD, we consider: FMC processor,
stream processor, DRAM, NAND flash and I/O.

We use the widely practiced event-based energy estimation
method (e.g., [33, 34]). We determine our energy parameters
based on publicly available information. For example, energy
of the host CPU and the in-iSSD processors are derived from
[27,35,36]. SRAM scratchpad memory and DRAM energy
are estimated using [37] and [38]. Flash memory energy is
obtained from data books and in-house measurement. For
fair comparison, we assume that the host CPU is built with
a 22-nm technology while the SSD/iSSD controllers are built
with a 45-nm technology (i.e., two technology generations
apart). Figure 10 is the result and the parameters used.

It is shown that overall, the iSSD configurations see large
energy reduction in all examined kernels by at least 5×
(k-means) and the average reduction was over 9×. Fur-
thermore, energy is significantly smaller when the stream
processor was used—the maximum reduction was over 27×
for linear_regression (9× without the stream processor). The
stream processor was very energy-efficient, consuming only
0.123 nJ/byte in the worst case (string_match), compared
with 63.0 nJ/byte of the host CPU for the same kernel.
Clearly, hardware acceleration proves to be effective for both
performance improvement and energy saving in iSSDs.

In host processing, typically more than half of all energy is
consumed for data transfer (I/O, chipset and main memory).
iSSD addresses this inefficiency by migrating computation
and eliminating unnecessary data transfer. In this sense, the
iSSD approach is in stark contrast with other approaches
toward efficient data processing, such as intelligent mem-

0

4

8

12

0

4

8

12

0

10

20

30

40
En

er
gy

 P
er

 B
yt

e
(n

J/
B

)

0

50

100

150

200

host ISSD
w/o SP

ISSD w/
SP

host ISSD
w/o SP

ISSD w/
SP

host ISSD
w/o SP

ISSD w/
SP

host ISSD
w/o SP

ISSD w/
SP

linear_reg. string_match k-means scan Legend

host
CPU

main
memory

I/O

SSD

chipset

NAND

DRAM

0

4

8

12

processor

I/O

SP

Category Energy Parameters

Host system ECPU = 0.82 nJ/inst. [35]
PDRAM = 420 mW [38]
Pchipset = 5.49 W [34]
PI/O = 9.61 W [34]

SSD & ISSD ENAND,8kB read = 3.31 μJ
ENAND,8kB write = 64.94 μJ

PDRAM = 154 mW [38]
Ehost i/f = 1.05 nJ/B [40]
Eproc. = 192 pJ/inst. [36]

Estream ALU = 2.11 pJ/op. [27]
Estream MUL = 67.6 pJ/op [27]

Estream Reg. = 4.23 pJ/access [27]
Eproc. SRAM = 89.3 pJ/read [37]
Estream SRAM = 21.1 pJ/read [37]

Figure 10: Breakdown of energy into key system components (left) and input parameters to the energy model (right).

ory [10], on-CPU specialization [15], GPGPUs [39] and low-
power CPUs [16]; they offer more efficient computing than
powerful CPUs but do not (fully) eliminate the overheads of
data transfer. For example, even if these approaches employ
the same energy-efficient reconfigurable stream processors,
their energy improvement would be limited to 1.04× to 1.60×
(when iSSD achieves 17× to 27× with acceleration).

Cost analysis. Finally, we estimate and compare the hard-
ware cost of an SSD and an iSSD. Standard components
like flash and DRAM chips are identical in both designs.
With that the main cost difference comes from the controller
chip. We break down the chip cost in gate count (details not
shown) and estimate the die cost difference to be 25%.4

The SSD bill of material (BOM) is dominated by the
NAND flash chips. 5or example, commodity 512 GB SSDs
are priced at as low as $399 in on-line stores as of June
2012, whereas 64 Gbit MLC NAND flash chips are sold
at $4.36 (obtained at www.dramexchange.com on June 10,
2012).5 According to this price, the cost for the flash memory
chips is $279, accounting for 70% of the SSD end user’s price.
Assuming a small end margin and logistics cost of 15% and
manufacturing costs of $5, the total BOM is $334.

After deducting other miscellaneous costs like DRAM ($4),
mechanical/electro-mechanical parts ($20) and box accessary
($5), we estimate the controller chip cost to be $26. Hence,
even if the new iSSD-capable controller chip costs 25% more
than a conventional controller chip, the additional cost of an
iSSD will not exceed 2% of a similarly configured SSD. We
believe that this cost is substantially smaller than upgrading
the host system (e.g., CPUs with more cores) to get the same
performance improvement the iSSD can bring and is well
exceeded by the expected energy savings over the system
lifetime.

6. CONCLUSIONS
Intelligent solid-state drives (iSSDs) offer compelling perfor-
mance and energy efficiency benefits, arising from modern
and projected SSD characteristics. Based on analytic models
and limited experimentation with a prototype iSSD, we show
that iSSDs could provide 2–4× higher data scanning through-

4
The main contributors to the iSSD chip cost increase include: embed-

ded CPU cores (more capabilities and more cores), more scratchpad
RAM (from more cores) and more complex FMCs.
5
Contract prices could be higher or lower than the spot price shown

here, depending on seasonal and macro price trends.

put and 5–27× better energy efficiency relative to today’s
use of commodity servers. Based on analysis of ten data-
intensive application kernels, we describe an architecture
based on reconfigurable stream processors (one per internal
flash memory channel) that could provide these benefits at
marginal hardware cost increases (<2%) to traditional SSDs.
Most of these benefits would also be realized over non-iSSD
approaches based on efficient processing outside of SSDs,
because they do not exploit SSD-internal bandwidth or avoid
costly high-bandwidth transfers of all processed data.

Acknowledgment
We thank the reviewers for their constructive comments,
which helped improve the quality of this paper. Hyunjin Lee
(now with Intel Labs) and Juyoung Jung at the University
of Pittsburgh assisted with early data collection. Sang Kyoo
Jeong of Memory Division, Samsung Electronics Co. proof-
read and offered detailed comments on a draft of this paper.
We appreciate the help of these individuals.

This work was supported in part by the US National Sci-
ence Foundation (CCF-1064976 and CNS-1012070), the Semi-
conductor Industry Collaborative Project between Hanyang
University and Samsung Electronics Co., the Basic Science
Research Program of the National Research Foundation of
Korea (NRF) funded by the Ministry of Education, Science
and Technology (2010-0005982, 2011-0013479), IT R&D pro-
gram MKE/KEIT (10041608), the Seoul Creative Human
Development Program (HM120006), and the companies of
the PDL Consortium.

7. REFERENCES
[1] R. E. Bryant, “Data-intensive supercomputing: The case for

disc,” Tech. Rep. CMU-CS-07-128, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, May
2007.

[2] A. Halevy, P. Norvig, and F. Pereira, “The unreasonable
effectiveness of data,” IEEE Intelligent Systems, vol. 24,
pp. 8–12, March 2009.

[3] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” in OSDI, pp. 137–150, 2004.

[4] T. White, Hadoop: The Definitive Guide (Chapter 6: How
MapReduce Works). O’Reilly, 2009.

[5] A. Acharya, M. Uysal, and J. Saltz, “Active disks:
programming model, algorithms and evaluation,”
ASPLOS-VIII, pp. 81–91, 1998.

[6] K. Keeton, D. A. Patterson, and J. M. Hellerstein, “A case for
intelligent disks (idisks),” SIGMOD Record, vol. 27, no. 3,
pp. 42–52, 1998.

[7] E. Riedel, G. A. Gibson, and C. Faloutsos, “Active storage for
large-scale data mining and multimedia,” VLDB ’98,
pp. 62–73, 1998.

[8] E. Riedel, Active Disks–Remote Execution for
Network-Attached Storage. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, 1999.

[9] E. Riedel, C. Faloutsos, G. Gibson, and D. Nagle, “Active
disks for large-scale data processing,”Computer, vol. 34,
pp. 68–74, June 2001.

[10] D. Patterson, T. Anderson, N. Cardwell, R. Fromm,
K. Keeton, C. Kozyrakis, R. Thomas, and K. Yelick, “A case
for intelligent ram,”Micro, IEEE, vol. 17, pp. 34–44,
March/April 1997.

[11] M. Oskin, F. Chong, and T. Sherwood, “Active pages: a
computation model for intelligent memory,” in Computer
Architecture, 1998. Proceedings. The 25th Annual
International Symposium on, pp. 192–203, June 1998.

[12] L. Barroso, J. Dean, and U. Holzle, “Web search for a planet:
The google cluster architecture,” IEEE Micro, vol. 23,
pp. 22–28, March-April 2003.

[13] Open Compute Project. http://opencompute.org.

[14] B. F. Cooper, E. Baldeschwieler, R. Fonseca, J. J. Kistler,
P. P. S. Narayan, C. Neerdaels, T. Negrin, R. Ramakrishnan,
A. Silberstein, U. Srivastava, and R. Stata, “Building a cloud
for yahoo!,” IEEE Data Eng. Bull., vol. 32, no. 1, pp. 36–43,
2009.

[15] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia,
V. Bryksin, J. Lugo-Martinez, S. Swanson, and M. B. Taylor,
“Conservation cores: reducing the energy of mature
computations,” in Proceedings of the fifteenth edition of
ASPLOS on Architectural support for programming languages
and operating systems, ASPLOS ’10, pp. 205–218, ACM,
2010.

[16] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,
L. Tan, and V. Vasudevan, “Fawn: a fast array of wimpy
nodes,” in Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, SOSP ’09, pp. 1–14, ACM,
2009.

[17] L. Huston, R. Sukthankar, R. Wickremesinghe,
M. Satyanarayanan, G. R. Ganger, E. Riedel, and
A. Ailamaki, “Diamond: A storage architecture for early
discard in interactive search,” FAST, pp. 73–86, 2004.

[18] S. Kim, H. Oh, C. Park, S. Cho, and S.-W. Lee, “Fast,
energy efficient scan inside flash memory solid-state drives,”
ADMS, September 2011.

[19] S. Boboila, Y. Kim, S. Vazhkudai, P. Desnoyers, and
G. Shipman, “Active flash: Performance-energy tradeoffs for
out-of-core processing on non-volatile memory devices,”
MSST, April 2012.

[20] D. Tiwari, S. Boboila, Y. Kim, X. Ma, P. Desnoyers, and
Y. Solihin, “Active flash: Towards energy-efficient, in-situ
data analytics on extreme-scale machines,” FAST,
pp. 119–132, February 2013.

[21] R. Schuetz and S. Jeong, “Looking ahead to higher
performance ssds with hlnand,” in Flash Memory Summit,
2010.

[22] W. Wong, “A chat about micron’s clearnand technology,”
electronic design, December 2010.

[23] R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix rebirth:
Scalable mapreduce on a large-scale shared-memory system,”
IISWC, pp. 198–207, 2009.

[24] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik,
and A. Choudhary, “Minebench: A benchmark suite for data
mining workloads,” IISWC, pp. 182–188, 2006.

[25] M. Cannataro, D. Talia, and P. K. Srimani, “Parallel data
intensive computing in scientific and commercial applications,”
Parallel Comput., vol. 28, pp. 673–704, May 2002.

[26] B. Ozisikyilmaz, R. Narayanan, J. Zambreno, G. Memik,
and A. Choudhary, “An architectural characterization study
of data mining and bioinformatics workloads,” IISWC,
pp. 61–70, 2006.

[27] W. J. Dally, U. J. Kapasi, B. Khailany, J. H. Ahn, and
A. Das, “Stream processors: Progammability and efficiency,”
Queue, vol. 2, pp. 52–62, March 2004.

[28] Khronos Group, “Opencl.”
http://www.khronos.org/opencl/.

[29] M. Mesnier, G. R. Ganger, and E. Riedel, “Object-based
storage,” IEEE Communication Magazine, vol. 41, pp. 84–90,
August 2003.

[30] Carbon SoC Designer Plus.
http://carbondesignsystems.com/SocDesignerPlus.aspx.

[31] Samsung Electronics Co.
http://www.samsung.com/global/business/semiconductor/
Greenmemory/Products/SSD/SSD_Lineup.html.

[32] TPC, “Tpc-h.” http://www.tpc.org/tpch/default.asp.
[33] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a

framework for architectural-level power analysis and
optimizations,” ISCA ’00, pp. 83–94, 2000.

[34] W. Bircher and L. John, “Complete system power
estimation: A trickle-down approach based on performance
events,” ISPASS, pp. 158–168, 2007.

[35] E. Grochowski and M. Annavaram, “Energy per instruction
trends in intel microprocessors.” Tech.@Intel Magazine,
March 2006.

[36] ARM Ltd., “Cortex a9 processor.” http://www.arm.com/
products/processors/cortex-a/cortex-a9.php.

[37] HP Labs., “Cacti 5.3.”
http://quid.hpl.hp.com:9081/cacti/.

[38] Micron Technology, Inc., “Sdram power calculator.”
http://download.micron.com/downloads/misc/SDRAM_
Power_Calc_10.xls.

[39] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang,
“Mars: a mapreduce framework on graphics processors,”
PACT ’08, pp. 260–269, 2008.

[40] NXP, “Nxp x1 phy single-lane transceiver px1011.”
http://ics.nxp.com/products/pcie/phys/.

