
Perspective: Semantic data management for the home

Brandon Salmon, Steven W. Schlosser�, Lorrie Faith Cranor, Gregory R. Ganger
Carnegie Mellon University, �Intel Research Pittsburgh

Abstract
Perspective is a storage system designed for the home,
with the decentralization and flexibility sought by home
users and a new semantic filesystem construct, the view,
to simplify management. A view is a semantic descrip-
tion of a set of files, specified as a query on file attributes,
and the ID of the device on which they are stored. By ex-
amining and modifying the views associated with a de-
vice, a user can identify and control the files stored on
it. This approach allows users to reason about what is
stored where in the same way (semantic naming) as they
navigate their digital content. Thus, in serving as their
own administrators, users do not have to deal with a sec-
ond data organization scheme (hierarchical naming) to
perform replica management tasks, such as specifying
redundancy to increase reliability and data partitioning
to address device capacity exhaustion. Experiences with
Perspective deployments and user studies confirm the ef-
ficacy of view-based data management.

1 Introduction
Distributed storage is coming home. An increasing num-
ber of home and personal electronic devices create, use,
and display digitized forms of music, images, videos, as
well as more conventional files (e.g., financial records
and contact lists). In-home networks enable these de-
vices to communicate, and a variety of device-specific
and datatype-specific tools are emerging. The transi-
tion to digital homes gives exciting new capabilities to
users, but it also makes them responsible for administra-
tion tasks usually handled by dedicated professionals in
other settings. It is unclear that traditional data manage-
ment practices will work for “normal people” reluctant
to put time into administration.

This paper presents the Perspective distributed filesys-
tem, part of an expedition into this new domain for
distributed storage. As with previous expeditions into
new computing paradigms, such as distributed operat-
ing systems (e.g., [23, 27]) and ubiquitous computing
(e.g., [41]), we are building and utilizing a system rep-
resenting the vision in order to gain experience. In this
case, however, the researchers are not representative of
the user population. Most will be non-technical people
who just want to use the system, but must (begrudgingly)

deal with administration tasks or live with the conse-
quences. Thus, organized user studies will be required
as complements to systems experimentation.

Perspective’s design is motivated by a contextual anal-
ysis and early deployment experiences [31]. Our inter-
actions with users have made clear the need for decen-
tralization, selective replication, and support for device
mobility and dynamic membership. An intriguing les-
son is that home users rarely organize and access their
data via traditional hierarchical naming—usually, they
do so based on data attributes. Computing researchers
have long talked about attribute-based data navigation
(e.g., semantic filesystems [12, 36]), while continuing
to use directory hierarchies. However, users of home
and personal storage live it. Popular interfaces (e.g.,
iTunes, iPhoto, and even drop-down lists of recently-
opened Word documents) allow users to navigate file col-
lections via attributes like publisher-provided metadata,
extracted keywords, and date/time. Usually, files are still
stored in underlying hierarchical file systems, but users
often are insulated from naming at that level and are
oblivious to where in the namespace given files end up.

Users have readily adopted these higher-level navigation
interfaces, leading to a proliferation of semantic data lo-
cation tools [42, 3, 13, 37, 19]. In contrast, the abstrac-
tions provided by filesystems for managing files have re-
mained tightly tied to hierarchical namespaces. For ex-
ample, most tools require that specific subtrees be identi-
fied, by name or by “volumes” containing them, in order
to perform replica management tasks, such as partition-
ing data across computers for capacity management or
specifying that multiple copies of certain data be kept for
reliability. Since home users double as their own system
administrators, this disconnect between interface styles
(semantic for data access activities and hierarchical for
management tasks) naturally creates difficulties.

The Perspective distributed filesystem allows a collec-
tion of devices to share storage without requiring a cen-
tral server. Each device holds a subset of the data and
can access data stored on any other (currently connected)
device. However, Perspective does not restrict the sub-
set stored on each device to traditional volumes or sub-
trees. To correct the disconnect between semantic data
access and hierarchical replica management, Perspective
replaces the traditional volume abstraction with a new

Proceedings of the 7th USENIX Conference on File and Storage Technologies (FAST '09).
February 24-27, 2009, San Francisco, CA.

primitive we call a view. A view is a compact descrip-
tion of a set of files, expressed much like a search query,
and a device on which that data should be stored. For
example, one view might be “all files with type=music
and artist=Beatles stored on Liz’s iPod” and another “all
files with owner=Liz stored on Liz’s laptop”. Each de-
vice participating in Perspective maintains and publishes
one or more views to describe the files that it stores. Per-
spective ensures that any file that matches a view will
eventually be stored on the device named in the view.

Since views describe sets of files using the same
attribute-based style as users’ other tools, view-based
management replica management is easier than hierar-
chical file management. A user can see what is stored
where, in a human-readable fashion, by examining the
set of views in the system. She can control replication
and data placement by changing the views of one or more
devices. Views allow sets of files to overlap and to be de-
scribed independently of namespace structure, removing
the need for users to worry about application-internal file
naming decisions or unfortunate volume boundaries. Se-
mantic management can also be useful for local manage-
ment tasks, such as setting file attributes and security, in
addition to replica management. In addition to anecdo-
tal experiences, an extensive lab study of 30 users each
performing 10 different management tasks confirms that
view-based management is easier for users than volume-
based management.

This paper describes view-based management and our
Perspective prototype, which combines existing tech-
nologies with several new algorithms to implement view-
based distributed storage. View-based data placement
and view freshness allow Perspective to manage and
expose data mobility with views. Distributed update
rules allow Perspective to ensure and expose permanence
with views (which can be thought of as semantically-
defined volumes). Perspective introduces overlap trees
as a mechanism for reasoning about how many replicas
exist of a particular dataset, and where these files are
stored, even when no view exactly matches the attributes
of the dataset.

Our Perspective prototype is a user-level filesystem
which runs on Linux and OS X. In our deployments, Per-
spective provides normal file storage as well as being the
backing store for iTunes and MythTV in one household
and in our research environment lounge. Experiments
with the Perspective prototype confirm that it can provide
consistent, decentralized storage with reasonable perfor-
mance. Even with its application-level implementation
(connected to the OS via FUSE [10]), Perspective per-
formance is within 3% of native filesystem performance
for activities of interest.

2 Storage for the home
Storage has become a component of many consumer
electronics. Currently, most stored content is captive
to individual devices (e.g., DVRs, digital cameras, dig-
ital picture frames, and so on), with human-intensive and
proprietary interfaces (if any) for copying it to other de-
vices. But, we expect a rapid transition toward exploiting
wireless home networking to allow increased sharing of
content across devices. Thus, we are exploring how to
architect a distributed storage system for the home.

The home is different from an enterprise. Most notably,
there are no sysadmins—household members generally
deal with administration (or don’t) themselves. The users
also interact with their home storage differently, since
most of it is for convenience and enjoyment rather than
employment. However, much of the data stored in home
systems, such as family photos, is both important and ir-
replaceable, so home storage systems must provide high
levels of reliability in spite of lax management practices.
Not surprisingly, we believe that home storage’s unique
requirements would be best served by a design differ-
ent than enterprise storage. This section outlines insights
gained from studying use of storage in real homes and
design features suggested by them.

2.1 What users want

A contextual analysis is an HCI research technique that
provides a wealth of in-situ data, perspectives, and real-
world anecdotes of the use of technology. It consists of
interviews conducted in the context of the environment
under study. To better understand home storage, we ex-
tensively interviewed all members of eight households
(24 people total), in their homes and with all of their stor-
age devices present. We have also gathered experiences
from early deployments in real homes. This section lists
some guiding insights (with more detailed information
available in technical reports [31]).

Decentralized and Dynamic: The users in our study
employed a wide variety of computers and devices.
While it was not uncommon for them to have a set of pri-
mary devices at any given point in time, the set changed
rapidly, the boundaries between the devices were porous,
and different data was “homed” on different devices with
no central server. One household had set up a home
server, at one point, but did not re-establish it when they
upgraded the machine due to setup complexity.

Money matters: While the cost of storage continues
to decrease, our interviews showed that cost remains a
critical concern for home users. Note that our studies
were conducted well before the Fall 2008 economic cri-
sis. While the same is true of enterprises, home stor-

age rarely has a clear “return on investment,” and the
cost is instead balanced against other needs (e.g., new
shoes for the kids) or other forms of enjoyment. Thus,
users replicate selectively, and many adopted cumber-
some data management strategies to save money.

Semantic naming: Most users navigated their data via
attribute-based naming schemes provided by their ap-
plications, such as iPhoto, iTunes, and the like. Of
course, these applications stored the content into files
in the underlying hierarchical file system, but users
rarely knew where. This disconnect created problems
when they needed to make manual copies or configure
backup/synchronization tools.

Need to feel in control: Many approaches to manage-
ability in the home tout automation as the answer. While
automation is needed, the users expressed a need to
understand and sometimes control the decisions being
made. For example, only 2 of the 14 users who backed up
data used backup tools. The most commonly cited rea-
son was that they did not understand what the tool was
doing and, thus, found it more difficult to use the tool
than to do the task by hand.

Infrequent, explicit data placement: Only 2 of 24 users
had devices on which they regularly placed data in antic-
ipation of needs in the near future. Instead, most users
decided on a type of data that belonged on a device (e.g.,
“all my music” or “files for this semester”) and rarely re-
visited these decisions, usually only when prompted by
environmental changes. Many did regularly copy new
files matching each device’s data criteria onto it.

2.2 Designing home storage

From the insights above, we extract guidance that has
informed our design of Perspective.

Peer-to-peer architecture: While centralization can be
appealing from a system simplicity standpoint, and has
been a key feature in many distributed filesystems, it
seems to be a non-starter with home users. Not only do
many users struggle with the concept of managing a cen-
tral server, many will be unwilling to invest the money
necessary to build a server with sufficient capacity and
reliability. We believe that a decentralized, peer-to-peer
architecture more cleanly matches the realities we en-
countered in our contextual analysis.

Single class of replicas: Many previous systems have
differentiated between two classes: permanent replicas
stored on server devices and temporarily replicas stored
on client devices (e.g., to provide mobility) [32, 25].
While this distinction can simplify system design, it in-
troduces extra complexity for users, and prevents users
from utilizing the capacity on client devices for reliabil-

ity, which can be important for cost-conscious home con-
sumers. Having only a single replica class removes the
client-server distinction from the user’s perception and
allows all peers to contribute capacity to reliability.

Semantic naming for management: Using the same
type of naming for both data access and management
should be much easier for users who serve as their own
administrators. Since home storage users have chosen
semantic interfaces for data navigation, replica manage-
ment tools should be adapted accordingly—users should
be able to specify replica management policies applied
to sets of files identified by semantic naming.

In theory, applications could limit the mismatch by align-
ing the underlying hierarchy to the application represen-
tation. But, this alternative seems untenable, in practice.
It would limit the number of attributes that could be han-
dled, lock the data into a representation for a particular
application, and force the user to sort data in the way
the application desires. Worse, for data shared across ap-
plications, vendors would have to agree on a common
underlying namespace organization.

Rule-based data placement: Users want to be able to
specify file types (e.g., “Jerry’s music files”) that should
be stored on particular devices. The system should al-
low such rules to be expressed by users and enforced
by the system as new files are created. In addition to
helping users to get the right data onto the right devices,
such support will help users to express specific replica-
tion rules at the right granularity, to balance their relia-
bility and cost goals.

Transparent automation: Automation can simplify
storage management, but many home users (like enter-
prise sysadmins) insist on understanding and being able
to affect the decisions made. By having automation tools
use the same flexible semantic naming schemes as users
do normally, it should be possible to create interfaces
that express human-readable policy descriptions and al-
low users to understand automated decisions.

3 Perspective architecture
Perspective is a distributed filesystem designed for home
users. It is decentralized, enables any device to store
and access any data, and allows decisions about what is
stored where to be expressed or viewed semantically.

Perspective provides flexible and comprehensible file or-
ganization through the use of views. A view is a concise
description of the data stored on a given device. Each
view describes a particular set of data, defined by a se-
mantic query, and a device on which the data is stored. A
view-based replica management system guarantees that

any object that matches the view query will eventually
be stored on the device named in the view. We will de-
scribe our query language in detail in Section 4.1.

Figure 1 illustrates a combination of management tools
and storage infrastructure that we envision, with views
serving as the connection between the two layers. Users
can set policies through management tools, such as those
described in Section 5, from any device in the system
at any time. Tools implement these changes by manipu-
lating views, and the underlying infrastructure (Perspec-
tive) in turn enforces those policies by keeping files in
sync among the devices according to the views. Views
provide a clear division point between tools that allow
users to manage data replicas and the underlying filesys-
tem that implements the policies.

View-based management enables the design points out-
lined in Section 2.2. Views provide a primitive allowing
users to specify meaningful rule-based placement poli-
cies. Because views are semantic, they unify the naming
used for data access and data management. Views are
also defined in a human-understandable fashion, provid-
ing a basis for transparent automation. Perspective pro-
vides data reliability using views without restricting their
flexibility, allowing it to use a single replica class.

3.1 Placing file replicas

In Perspective, the views control the distribution of data
among the devices in the system. When a file is created
or updated, Perspective checks the attributes of the file
against the current list of views in the system and sends
an update message to each device with a view that con-
tains that file. Each device can then independently pull a
copy of the update.

When a device, A, receives an update message from an-
other device, B, it checks that the updated file does, in-
deed, match one or more views that A has registered. If
the file does match, then A applies the update from B.
If there is no match, which can occur if the attributes of
a file are updated such that it is no longer covered by a
view, then A ensures that there is no replica of the file
stored locally.

This simple protocol automatically places new files, and
also keeps current files up to date according to the cur-
rent views in the system. Simple rules described in Sec-
tion 4.3 assure that files are never dropped due to view
changes.

Each device is represented by a file in the filesystem that
describes the device and its characteristics. Views them-
selves are also represented by files. Each device registers
a view for all device and view files to assure they are
replicated on all participating devices. This allows appli-

Views

Infrastructure
 (Perspective)

Management tools

Eric’s files (12000)

▼ All files (10000)

FILES

S
E

CI
V

E
D

▼
secived ll

A
esuoh no

mla
S

p otpal no dnar
B

R
V

D yli
maF

 potpal cir
E

potksed yli
maF

potksed nodnar
B

►
esuoh s’a

mdnar
G

Brandon’s files (10000)

Movies (50)

Family photos (300)

TV shows (25)

All files stored

No files stored

Some files stored

▼

ytiliba ile
R

potpal yli
maF

Created before 5/15 (9000)

Created on/after 5/15 (1000)

Lo

Md

Md

Lo

Lo

Hi
Md

Hi

x - +

Eric’s files (12000)

▼ All files (10000)

FILES

S
E

CI
V

E
D

▼
secived ll

A
esuoh no

mla
S

potpal nodnar
B

R
V

D yli
maF

 potpal cir
E

po tksed y li
maF

potksed nodnar
B

►
esuoh s’a

mdnar
G

Brandon’s files (10000)

Movies (50)

Family photos (300)

TV shows (25)

All files stored

No files stored

Some files stored

▼

ytilibaile
R

potpal yli
maF

Created before 5/15 (9000)

Created on/after 5/15 (1000)

Lo

Md

Md

Lo

Lo

Hi
Md

Hi

x - +

Alice cell
(type = calendar or
type = address)
and owner = Alice

Desktop
everything

DVR
type = movie owner = Bob

Bob laptop

Figure 1: View-based architecture. Views are the interface between
management tools and the underlying heterogeneous, disconnected in-
frastructure. By manipulating the views, tools can specify data policies
that are then enforced by the filesystem.

cations to manage views through the standard filesystem
interfaces, even if not all devices are currently present.

3.2 View-based data management

This subsection presents three scenarios to illustrate
view-based management.

Traveling: Harry is visiting Sally at her house and would
like to play a new U2 album for her while he is at her
house. Before leaving, he checks the views defined on
his wireless music player and notices the songs are not
stored on the device, though he can play them from his
laptop where they are currently stored. He asks the mu-
sic player to pull a copy of all U2 songs, which the player
does by creating a new view for this data. When the syn-
chronization is complete, the filesystem marks the view
as complete, and the music player informs Harry.

He takes the music player over to Sally’s house. Be-
cause the views on his music player are defined only for
his household and the views on Sally’s devices for her
household, no files are synchronized. But, queries for
“all music” initiated from Sally’s digital stereo can see
the music files on Harry’s music player, so they can lis-
ten to the new U2 album off of Harry’s music player on
the nice stereo speakers, while he is visiting.

Crash: Mike’s young nephew Oliver accidentally pushes
the family desktop off of the desk onto the floor and
breaks it. Mike and his wife Carol have each configured
the system to store their files both on their respective lap-
top and on the desktop, so their data is safe. When they
set up the replacement computer, a setup tool pulls the
device objects and views from other household devices.
The setup tool gives them the option to replace an old de-
vice with this computer, and they choose the old desktop
from the list of devices. The tool then creates views on
the device that match the views on the old desktop and
deletes the device object for the old computer. The data
from Mike and Carol’s laptops is transferred to the new

desktop in the background over the weekend.

Short on space: Marge is working on a project for work
on her laptop in the house. While she is working, a ca-
pacity automation tool on her laptop alerts her that the
laptop is short on space. It recommends that files cre-
ated over two years ago be moved to the family desk-
top, which has spare space. Marge, who is busy with her
project, decides to allow the capacity tool to make the
change. She later decides to keep her older files on the
external hard drive instead, and makes the change using
a view-editing interface on the desktop.

4 Perspective design
This section details three aspects of Perspective: seman-
tic search and naming, consistent partial replication of
sets of files, and reliability maintenance and reasoning.

The Perspective prototype is implemented in C++ and
runs at user-level using FUSE [10] to connect with the
system. It currently runs on both Linux and Macintosh
OS X. Perspective stores file data in files in a reposi-
tory on the machine’s local filesystem and metadata in
a SQLite database with an XML wrapper. Our prototype
implements all of the features described in this paper ex-
cept garbage collection and some advanced update log
features.

The prototype system has supporting one researcher’s
household’s DVR, which is under heavy use; it is the ex-
clusive television for him and his four roommates, and is
also frequently used by sixteen other friends in the same
complex. It has also stored one researcher’s personal data
for about a year. It has also been the backing store for
the DVR in the lounge for our research group for several
months. We are preparing the system for deployment in
several non-technical households for a wider, long-term
user study over several months.

4.1 Search and naming

All naming in Perspective uses semantic metadata.
Therefore, search is a very common operation both for
users and for many system operations. Metadata queries
can be made from any device and Perspective will return
references to all matching files on devices currently ac-
cessible (e.g., on the local subnet), which we will call
the current device ensemble [33]. Views allow Perspec-
tive to route queries to devices containing all needed files
and, when other devices suffice, avoid sending queries
to power-limited devices. While specialized applications
may use the Perspective API directly, we expect most ap-
plications to access files through the standard VFS layer,
just as they access other filesystems. Perspective pro-

vides this access using front ends that support a variety
of user-facing naming schemes. These names are then
converted to Perspective searches, which are then passed
on to the filesystem. Our current prototype system imple-
ments four front ends that each support a different orga-
nization: directory hierarchies, faceted metadata, simple
search, and hierarchies synthesized from the values of
specific tags.

Query language and operations: We use a query lan-
guage based on a subset of the XPath language used for
querying XML. Our language includes logic for com-
paring attributes to literal values with equality, standard
mathematical operators, string search, and an operator
to determine if a document contains a given attribute.
Clauses can be combined with the logical operators and,
or, and not. Each attribute is allowed to have a sin-
gle value, but multi-value attributes can be expressed in
terms of single value attributes, if necessary. We require
all comparisons to be between attributes and constant
values.

In addition to standard queries, we support two opera-
tions needed for efficient naming and reliability analy-
sis. The first is the enumerate values query, which re-
turns all values of an attribute found in files matching
a given query. The second is the enumerate attributes
query, which returns all the unique attributes found in
files matching a given query. These operations must be
efficient; fortunately we can support them at the database
level using indices, which negate the need for full enu-
meration of the files matching the query.

This language is expressive enough to capture many
common data organization schemes (e.g., directories,
unions [27], faceted metadata [43], and keyword search)
but is still simple enough to allow Perspective to effi-
ciently reason about the overlap of queries. Perspective
can support any of the replica management functions de-
scribed in this paper for any naming scheme that can be
converted into this language.

Overlap evaluation is commonly used to compare two
queries. The overlap evaluation operation returns one
of three values when applied to two queries: one query
subsumes the other, the two queries have no-overlap,
or the relationship between them is unknown. Note
that the comparison operator is used for efficiency but
not correctness, allowing for a trade-off between lan-
guage complexity and efficiency. For example, Perspec-
tive can determine that the query all files where date
< January, 2008 is subsumed by the query all files
where date < June, 2008, and that the query all files
where owner=Brandon does not overlap with the query
all files where owner=Greg. However, it cannot deter-
mine the relationship between the queries all files where

type=Music and all files where album=The Joshua Tree.
Perspective will correctly handle operations on the latter
two queries, but at some cost in efficiency.

4.2 Partial replication

Perspective supports partial replication among the de-
vices in a home. Devices in Perspective can each store
disjoint sets of files — there is no requirement that any
master device store all files or that any device mirror an-
other in order to maintain reliability. Previous systems
have supported either partial replication [16, 32] or topol-
ogy independence [40], but not both. PRACTI [7] pro-
vided a combination of the two properties tied to direc-
tories, but probably could be extended to work in the se-
mantic case. Recently, Cimbiosis [28] has also provided
partial replication with effective topology independence,
although it requires all files to be stored on some mas-
ter device. We present Perspective’s algorithms to show
that it is possible to build a simple, efficient consistency
protocol for a view-based system, but a full comparison
with previous techniques is beyond the scope of this pa-
per. The related work section presents the differences
and similarities with previous work.

Synchronization: Devices that are not currently acces-
sible at the time of an update will receive that update at
synchronization time, when the two devices exchange in-
formation about updates that they may have missed. De-
vice and view files are always synchronized before other
files, to make sure the device does not miss files matching
new views. Perspective employs a modified update log
to limit the exchanges to only the needed information,
much like the approach used in Bayou [40]. However,
the flexibility of views makes this task more challenging.

For each update, the log contains the metadata for the file
both before and after the update. Upon receiving a sync
request, a device returns all updates that match the views
for the calling device either before or after the update. As
in Bayou, the update log is only an optimization; we can
always fall back on full file-by-file synchronization.

Conventional full synchronization can be problematic for
heterogeneous devices with partial replication, especially
for resource- and battery-limited devices. For example, if
a cell phone syncs with a desktop computer, it is not fea-
sible for the cell phone to process all of the files on the
desktop, even occasionally. To address this problem, Per-
spective includes a second synchronization option. Con-
tinuing the example, the cell phone first asks the desktop
how many updates it would return. If this number is too
large, the cell phone can pass the metadata of all the files
it owns to the desktop, along with the view query, and
ask the desktop for updates for any files that match the
view or are contained in the set of files currently on the

cell phone. At each synchronization, the calling device
can choose either of these two methods, reducing syn-
chronization costs to O(Nsmaller), where Nsmaller is the
number of files stored on the smaller device.

Full synchronizations will only return the most recent
version of a file, which may cause gaps in the update
logs. If the update log has a gap in the updates for a
file, recognizable by a gap in the versions of the before
and after metadata, the calling device must pass this up-
date back to other devices on synchronization even if
the metadata does not match the caller’s views, to avoid
missing updates to files which used to match a view, but
now do not.

Consistency: As with many file systems that support
some form of eventual consistency, Perspective uses ver-
sion vectors and epidemic propagation to ensure that all
file replicas eventually converge to the same version.
Version vectors in Perspective are similar to those used
in many systems; the vector contains a version for each
replica that has been modified. Because Perspective does
not have the concept of volumes, it does not support
volume-level consistency like Bayou. Instead, it supports
file-level consistency, like FICUS [16].

To keep all file replicas consistent, we need to assure that
updates will eventually reach all replicas. If all devices
in the household sync with one another occasionally, this
property will be assured. While this is a reasonable as-
sumption in many homes, we do not require full pair-
wise device synchronization. Like many systems built on
epidemic propagation, a variety of configurations satisfy
this property. For example, even if some remote device
(e.g., a work computer) never returns home, the property
will still hold as long as some other device that syncs
with the remote device and does return home (e.g., a lap-
top) contains all the data stored on the remote device.
System tools might even create views on such devices to
facilitate such data transfer, similar to the routing done in
Footloose [24]. Alternately, a sync tree, as that used in
Cimbiosis [28] could be layered on top of Perspective to
provide connectedness guarantees.

By tracking the timestamps of the latest complete sync
operation for each device in the household, devices pro-
vide a freshness timestamp for each view. Perspective
can guarantee that all file versions created before the
freshness timestamp for a view are stored on that view’s
device. It can also recommend sync operations needed to
advance the freshness timestamp for any view.

Conflicts: Any system that supports disconnected oper-
ation must deal with conflicts, where two devices mod-
ify the same file without knowledge of the other de-
vice’s modification. We resolve conflicts first with a pre-
resolver, which uses the metadata of the two versions to

deterministically choose a winning and losing version.
Our pre-resolver can be run on any device without any
global agreement. It uses the file’s modification time and
then the sorted version vector in the case of a tie. But, in-
stead of eliminating the losing version, the pre-resolver
creates a new file, places the losing version in this new
file. It then tags the new file with all metadata from the
losing version, as well as tags marking it as a conflict file
and tying it to the winning version. Later, a full resolver,
which may ask for user input or use more sophisticated
logic, can search for conflict objects, remove duplicates,
and adjust the resolution as desired.

Capacity management: Pushing updates to other de-
vices can be problematic if those devices are at full ca-
pacity. In this case, the full device will refuse subsequent
updates, and mark the device file noting that the device
is out of space. Until a user or tool corrects the problem,
the device will continue to refuse updates, although other
devices will be able to continue. However, management
tools built on top of Perspective should help users ad-
dress capacity problems before they arise.

File deletion: As in many other distributed filesystems,
when a file is removed, Perspective keeps a tombstone
marker that assures all replicas of the file in the system
are deleted, but is ignored by all naming operations. Per-
spective uses a two-phase garbage collection mechanism,
like that used in FICUS, between all devices with views
that match the file to which the tombstone belongs. Note
that deletion of a file removes all replicas of a file in the
system, which is a different operation from dropping a
particular replica of a file (done by manipulating views).
This distinction also exists in any distributed filesystem
allowing replication.

View and device objects: Each device is only required
to store view and device objects from devices that con-
tain replicas of files it stores, although they must also
temporarily store view and device files for devices in the
current ensemble in order to access their files. Because
views are very small (hundreds of bytes), this is tractable,
even for small devices like cell phones.

4.3 Reliability with partial replication

In order to manage data semantically, users must be
able to provide fault-tolerance on data split semanti-
cally across a distributed set of disconnected, eventually-
consistent devices. Perspective enables semantic fault-
tolerance through two new algorithms, and provides a
way to efficiently reason about the number of replicas of
arbitrary sets of files. It also assures that data is never
lost despite arbitrary and disconnected view manipula-
tion using three simple distributed update rules.

Reasoning about number of replicas: Reasoning about
the reliability of a storage system — put simply, deter-
mining the level of replication for each data item — is a
challenge in a partially-replicated filesystem. Since de-
vices can store arbitrary subsets of the data, there are no
simple rules that allow all of the replicas to be counted.
A naı̈ve solution would be to enumerate all of the files
on each device and count replicas. Unfortunately, this
would be prohibitively expensive and would be possible
only if all devices are currently accessible.

Fortunately, Perspective’s views compactly and fully de-
scribe the location of files in terms of their attributes.
Since there are far fewer views than there are file repli-
cas in the system, it is cheaper to reason about the num-
ber of times a particular query is replicated among all of
the views in the system than to enumerate all replicas.
The files in question could be replicated exactly (e.g., all
of the family’s pictures are on two devices), they could
be subsumed by multiple views (e.g., all files are on the
desktop and all pictures are on the laptop), or they could
be replicated in part on multiple devices but never in full
on any one device (e.g., Alice’s pictures are on her laptop
and desktop, while Bob’s pictures are on his laptop and
desktop – among all devices, the entire family’s pictures
have two replicas).

To efficiently reason about how views overlap, Perspec-
tive uses overlap trees. An overlap tree encapsulates the
location of general subsets of data in the system, and
thus simplifies the task of determining the location of the
many data groupings needed by management tools. An
overlap tree is currently created each time a management
application starts, and then used throughout the applica-
tion’s runtime to answer needed overlap queries.

Overlap trees are created using the enumeration queries
described in Section 4.1. Each node contains a query,
that describes the set of data the node represents. Each
leaf node represents a subset of files whose location can
be precisely quantify using the views and records the de-
vices that store that subset. Each interior node of the tree
encodes a subdivision of the attribute space, and contains
a list of child nodes, each of which represents a subset of
the files that the parent node represents. We begin build-
ing the tree by enumerating all of the attributes that are
used in the views found in the household.

We create a root node for the tree to represent all files,
choose the first attribute in our attribute list, and use the
enumerate values query to find all values of this attribute
for the current node’s query. We then create a child
node from each value with a query of the form <parent
query> and attribute=value. We compare the query for
each child node against the complete views on all de-
vices. If the compare operator can give a precise answer

(i.e., not unknown) for whether the query for this node
is stored on each device in the home, then this node is a
leaf and we can stop dividing. Otherwise, we recursively
perform this operation on the child node, dividing it by
the next attribute in our list. Figure 2 shows an exam-
ple overlap tree. The ordering of the attribute list could
be optimized to improve performance of the overlap tree,
but in the current implementation we leave it unordered.

When we create an overlap tree, we may not have all the
information needed to construct the tree. For example, if
we currently only have access to Brian’s files, we may in-
correctly assume that all music files in the household are
owned by Brian, when music files owned by Mary exist
elsewhere in the system. The tree construction mecha-
nism makes a notation in a node if it cannot guarantee
that all matching files are available via the views. When
checking for overlaps, if a marked node is required the
tree will return an unknown value, but it will still cor-
rectly compute overlaps for queries that do not require
these nodes. To avoid this restriction, devices are free
to cache and update an overlap tree, rather than recreat-
ing the overlap tree when each management application
starts. The tree is small, making caching it easy. To keep
it up to date, a device can publish a view for all files, and
then use the updates to keep the cached tree up to date.

Once we have constructed the overlap tree, we can use
it to determine the location and number of full copies in
the system of the files for any given query. Because the
tree caches much of the overlap processing, each indi-
vidual query request can be processed efficiently. We
do so by traversing all of the leaf nodes and finding
those that overlap with the given view or query. We
may occasionally need to perform more costly overlap
detection, if the attribute in a leaf node does not match
any of the attributes in the query. For example, in the
overlap tree in Figure 2, if we were checking to see if
the query album=Joshua Tree was contained in the node
owner=Mary and type=Music we would use the enumer-
ate values query to determine the values of “type” for the
query album=Joshua Tree and owner=Mary. If “Mu-
sic” is the only value, then we can count this node as a
full match in our computations. Otherwise, we cannot.
This extra comparison is only valid if we can determine
via the views that all files in the query for which we are
computing overlaps are accessible

Attributes with larger cardinalities can be handled more
efficiently by selectively expanding the tree. For exam-
ple, if a view is defined on date < T, we need only expand
the attribute date into three sub-nodes, one for date < T,
one for date ≥ T, and one for has no date attribute.

Note that the number of attributes used in views at any
one time is likely to be much smaller than the total num-

����������

	
��������� 	
��������

	
������������

����������

	
������������

�����	�������

	
������������

������������

��������	
�	��
�����

�������	
�	����
��
�����

�����������
�	����
��
�����

��������	
�	����
��
�����

�������	
�	��
�����

�����������
�	��
�����

��������	
�	����
��
�����

�������	
�	��
�����

�����������
�	����
��
�����

��������	
�	����
��
�����

�������	
�	��
�����

�����������
�	����
��
�����

Figure 2: Overlap tree. This figure shows an example overlap
tree, constructed from a three-device, three-view scenerio: Brian’s files
stored on Brian’s laptop, Mary’s files stored on Mary’s laptop, and
Mary’s music stored on the Family desktop. Shaded nodes are inte-
rior nodes, unshaded nodes are leaf nodes. Each leaf node lists whether
this query is stored on each device the household.

ber of attributes in the system, and both of these will be
much smaller than the total number of files or replicas.
For example, in our contextual analysis, most house-
holds described settings requiring around 20 views and
5 attributes. None of households we interviewed de-
scribed more than 30 views, or more than 7 attributes.
Because the number of relevant attributes is small, over-
lap tree computations are fast enough to allow us to com-
pute them in real time as the user browses files. We will
present a performance comparison of overlap trees to the
naı̈ve approach in Section 6.

Update rules: Perspective maintains permanence by
guaranteeing that files will never be lost by changes to
views or addition or removal of devices, regardless of
the order, timing, or origin of the changes, freeing the
user from worrying about these problems when making
view changes. We also provide a guarantee that, once
a version of a file is stored on the devices associated
with all overlapping views, it will always be stored in
all overlapping views, which provides a strong assurance
on the number of copies in the system based on the cur-
rent views. View freshness timestamps, as described in
Section 4.2, allow Perspective to guarantee that all up-
dates created before a given timestamp are safely stored
in the correct locations, and thus have the fault-tolerance
implied by the views. These guarantees are assured by
careful adherence to three simple rules: 1) When a file
replica is modified by a device, it is marked as “modi-
fied.” Devices cannot evict modified replicas. Once a
modified replica has been pulled by a device holding a
view covering it, the file can be marked as unmodified
and then removed. 2) A newly created view cannot be
considered complete until it has synced with all devices
with overlapping views or synced with one device with
a view that subsumes the new view. 3) When a view is
removed, all replicas in it are marked as modified. The
replicas are then removed when they conform to rule 1.

These rules ensure that devices will not evict modified
replicas until they are safely on some “stable” location
(i.e., in a completely created view). The rules also assure
that a device will not drop a file until it has confirmed that
another up-to-date replica of the file exists somewhere in
the system. However, a user can force the system to drop
a file replica without assuring another replica exists, if
she is confident that another replica exists and is willing
to forgo this system protection. With these rules, Per-
spective can provide permanence guarantees without re-
quiring central control or limiting when or where views
can be changed.

4.4 Security and cross-household sharing

Security is not a focus in this paper, but is certainly a
concern for users and system designers alike. While
Perspective does not currently support it, we envision
using mechanisms such as those promoted by the UIA
project [8]. Our current prototype supports voluntary ac-
cess control using simplified access control lists. While
all devices are able to communicate and share replicas
with one another, even aside from security concerns it
is helpful to divide households from one another to di-
vide management and view specification. To do so, Per-
spective maintains a household ID for each device and
each file. Views are specified on files within the given
household, to avoid undesired cross-syncing. However,
the fundamental architecture of Perspective places no re-
strictions on how these divisions are made.

5 View manager interface
To explore view-based management, we built a view
manager tool to allow users to manipulate views.

Customizable faceted metadata: One way of visual-
izing and accessing semantic data is through the use of
faceted metadata [43]. Faceted metadata allows a user
to choose a first attribute to use to divide the data and
a value at which to divide. Then, the user can choose
another attribute to divide on, and so on. Faceted meta-
data helps users browse semantic information by giving
them the flexibility to divide the data as needed. But, it
can present the user with a dizzying array of choices in
environments with large numbers of attributes.

To curb this problem, we developed customizable faceted
metadata (CFM), which exposes a small user-selected
set of attributes as directories plus one additional other
groupings directory that contains a full list of possible at-
tributes. The user can customize which attributes are dis-
played in the original list by moving folders between the
base directory and the other groupings directory. These

preferences are saved in a customization object in the
filesystem. The file structure on the left side of the in-
terface in Figure 3 illustrates CFM. Perspective exposes
CFM through the VFS layer, so it can be accessed in the
same way as a normal hierarchical filesystem.

View manager interface: The view manager interface
(Figure 3), allows users to create and delete views on
devices and to see the effects of these actions. This GUI
is built in Java and makes calls into the view library of
the underlying filesystem.

The GUI is built on Expandable Grids [29], a user inter-
face concept initially developed to allow users to view
and edit file system permissions. Each row in the grid
represents a file or file group, and each column repre-
sents a device in the household. The color of a square
represents whether the files in the row are stored on the
device in the column. The files can be “all stored” on
the device, “some stored” on the device, or “not stored”
on the device. Each option is represented by a different
color in the square. By clicking on a square a user can
add or remove the given files from the given device. Sim-
ilarly to file permissions, this allows users to manipulate
actual storage decisions, instead of rule lists.

An extra column, labeled “Summary of failure protec-
tion,” shows whether the given set of files is protected
from one failure or not, which is true if there are at least
two copies of each file in the set. By clicking on an
unbacked-up square, the user can ask the system to as-
sure that two copies of the files are stored in the system,
which it will do by placing any extra needed replicas on
devices with free space.

An extra row contains all unique views and where they
are stored, allowing a user to see precisely what data is
stored on each device at a glance.

6 Evaluation
Our experience from working with many home storage
users suggests that users are very concerned about the
time and effort spent managing their devices and data at
home, which has motivated our design of Perspective, as
well as our evaluation. Therefore, we focus our study pri-
marily on the usability of Perspective’s management ca-
pabilities and secondarily on its performance overhead.

We conducted a lab study in which non-technical users
used Perspective, outfitted with appropriate user inter-
faces, to perform home data management tasks. We mea-
sured accuracy and completion time of each task. In or-
der to insulate our results as much as possible from the
particulars of the user interface used for each primitive,
we built similar user interfaces for each primitive using

Figure 3: View manager interface. A screen shot of the view man-
ager GUI. On the left are files, grouped using faceted metadata. Across
the top are devices. Each square shows whether the files in the row are
stored on the device in the column.

the Expandable Grids UI toolkit [29].

Views-facet interface: The views-facet interface was
described in Section 5. It uses CFM to describe data,
and allows users to place any set of data described by the
faceted metadata on any device in the home.

Volumes interface: This user interface represents a sim-
ilar interface built on top of a more conventional volume-
based system with directory hierarchies. Each device is
classified as a client or server, and this distinction is listed
in the column along with the device name. The volumes
abstraction only allows permanent copies of data to be
placed on servers, and it restricts server placement poli-
cies on volume boundaries. We defined each root level
directory (based on user) as a volume. The abstraction
allows placement of a copy of any subtree of the data
on any client device, but these replicas are only tempo-
rary caches and are not guaranteed to be permanent or
complete. The interface distinguishes between tempo-
rary and permanent replicas by color. The legend dis-
plays a summary of the rules for servers and permanent
data and for clients and temporary data.

Views-directory interface: To tease apart the effects of
semantic naming and using a single replica class, we
evaluated an intermediate interface, which replaces the
CFM organization with a traditional directory hierarchy.

Otherwise, it is identical to the views-facet interface. In
particular, it allows users to place any subtree of the hi-
erarchy on any device.

6.1 Experiment design

Our user pool consisted of students and staff from nearby
universities in non-technical fields who stated that they
did not use their computers for programming. We did a
between-group comparison, with each participant using
one of the three interfaces described above. We tested
10 users in each group, for a total of 30 users overall.
The users performed a think-aloud study in which they
spoke out loud about their current thoughts and read out
loud any text they read on the screen, which provides in-
sight into the difficulty of tasks and users’ interpretation.
All tasks were performed in a latin square configuration,
which guarantees that every task occurs in each position
in the ordering, and each task is equally likely to follow
any other task.

We created a filesystem with just over 3,000 files, based
on observations from our contextual analysis. We cre-
ated a setup with two users, Mary and Brian, and a
third “Family” user with some shared files. We modeled
Brian’s file layout on the Windows music and pictures
tools and Mary’s on Apple’s iTunes and iPhoto file trees.
Our setup included four devices: two laptops, a desk-
top, and a DVR. We also provided the user with iTunes
and iPhoto, with the libraries filled with all of the match-
ing data from the filesystem. This allowed us to evaluate
how users convert from structures in the applications to
the underlying filesystem.

6.2 Tasks

Each participant performed the same set of tasks, which
we designed based on our contextual analysis. We started
each user with a 5 to 10 minute training task, after which
our participants performed 10 data management tasks.
While space constraints preclude us including the full
text for all of them, as we discuss each class of tasks,
we include the text of one example task. For this study,
we chose tasks to illustrate the differences between the
approaches. A base-case task that was similar in all inter-
faces confirmed that, on these similar tasks, all interfaces
performed similarly. The tasks were divided into two
types: single replica tasks, and data organization tasks.

Single replica tasks: Two single replica tasks (LH and
CB) required the user to deal with distinctions between
permanent and temporary replicas to be successful.

Example task, Mary’s laptop comes home (LH): “Mary
has not taken her laptop on a trip with her for a while
now, so she has decided to leave it in the house and make

an extra copy of her files on it, in case the Family desktop
fails. However, Brian has asked her not to make extra
copies of his files or of the Family files. Make sure Mary’s
files are safely stored on her laptop.”

Mary’s laptop was initially a client in the volume case.
This task asked the user to change it to a server before
storing data there. This step was not required for the sin-
gle replica class interfaces, as all devices are equivalent.

Note that because server/client systems, unlike Perspec-
tive, are designed around non-portable servers for sim-
plicity, it is not feasible to simply make all devices
servers. Indeed, the volume interface actually makes
this task much simpler than current systems; in the vol-
ume interface, we allow the user to switch a device from
server to client using a single menu option, where current
distributed filesystems require an offline device reformat.

Data organization tasks: The data organization tasks
required users to convert from structures in the iTunes
and iPhoto applications into the appropriate structures in
the filesystem. This allowed us to test the differences be-
tween a hierarchical and semantic, faceted systems. The
data organization tasks are divided into three types: ag-
gregation, comprehension, and sparse collection tasks.

Aggregation: One major difference between semantic
and hierarchical systems is that because the hierarchy
forces a single tree, tasks that do not match the current
tree require the user to aggregate data from multiple di-
rectories. This is a natural case as homes fill with ag-
gregation devices and data is shared across users and de-
vices. However, in a hierarchical system, it is difficult for
users to know all the folders that correspond to a given
application grouping. Users often erroneously assumed
all the files for a given collection were in the same folder.
The semantic structure mitigates this problem, since the
user is free to use a filesystem grouping suited to the cur-
rent specific task.

Example task, U2 (U2): “Mary and Brian share music
at home. However, when Mary is on trips, she finds that
she can’t listen to all the songs by U2 on her laptop. She
doesn’t listen to any other music and doesn’t want other
songs taking up space on her laptop, but she does want
to be able to listen to U2. Make sure she can listen to all
music by the artist U2 on her trips.”

As may often be the case in the home, the U2 files were
spread across all three user’s trees in the hierarchical in-
terfaces. The user needed to use iTunes to locate the var-
ious folders. The semantic system allowed the user to
view all U2 files in a single grouping.

Aggregation is also needed when applications sort data
differently from what is needed for the current task. For
example, iPhoto places modified photos in a separate

folder tree from originals, making it tricky for users to
get all the files for a particular event. The semantic struc-
ture allows applications to set and use attributes, while
allowing the user to group data as desired.

Example task, Rafting (RF): “Mary and Brian went on
a rafting trip and took a number of photos, which Mary
remembers they labeled as ‘Rafting 2007’. She wants to
show her mother these photos on Mary’s laptop. How-
ever, she doesn’t want to take up space on her laptop for
files other than the ‘Rafting 2007’ files. Make sure Mary
can show the photos to her mother during her visit.”

The rafting photos were initially in Brian’s files, but
iPhoto places modified copies of photos in a separate di-
rectory in the iPhoto tree. To find both folders, the user
needed to explore the group in iPhoto. The semantic sys-
tem allows iPhoto to make the distinction, while allowing
the user to group all files from this roll in one grouping.

Comprehension: Applications can allow users to set
policies on application groupings, and then convert them
into the underlying hierarchy. However, in addition to
requiring multiple implementations and methods for the
same system tasks, this leads to extremely messy under-
lying policies, which make it difficult for users to under-
stand, especially when viewing it from another applica-
tion. In contrast, semantic systems can retain a descrip-
tion of the policy as specified by the application, making
them easier for users to understand.

Example task, Traveling Brian (TB): “Brian is taking a
trip with his laptop. What data will he be able to access
while on his trip? You should summarize your answer
into two classes of data.”

Brian’s laptop contained all of his files and all of the
music files in the household. However, because iTunes
places TV shows in the Music repository, the settings
included all of the music subfolders, but not the “TV
Shows” subfolder, causing confusion. In contrast, the
semantic system allows the user to specify both of these
policies in a single view, while still allowing applications
to sort the data as needed.

Note that this particular task would be simpler if iTunes
chose to sort its files differently, but the current iTunes
organization is critical for other administrative tasks,
such as backing up a user’s full iTunes library. It is im-
possible to find a single hierarchical grouping that will
be suited to all needed operations. This task illustrates
how these kinds of mismatches occur even for common
tasks and well-behaved applications.

Sparse collection: Two sparse collection tasks (BF and
HV) required users to make policies on collections that
contain single files from across the tree, such as song
playlists. These structures do not lend themselves well

to a hierarchical structure, so they are kept externally
in application structures, forcing users to re-create these
policies by hand. In contrast, semantic structures allow
applications to push these groupings into the filesystem.

Example task, Brian favorites (BF): “Brian is taking a
trip with his laptop. He doesn’t want to copy all music
onto his laptop as he is short on space, but he wants to
have all of the songs on the playlist “Brian favorites”.”

Because the playlist does not exist in the hierarchy, the
user had to add the nine files in the playlist individually,
after looking up the locations using iTunes. In the se-
mantic system, the playlist is included as a tag, allowing
the user to specify the policy in a single step.

6.3 Results

All of the statistically significant comparisons are in fa-
vor of the facet interface over the alternative approaches,
showing the clear advantage of semantic management for
these tasks. For the single replica tasks the facet and di-
rectory interfaces perform comparably, as expected, with
an average accuracy of 95% and 100% respectively, com-
pared to an average of 15% for the volume interface.
For the data organization tasks, the facet interface out-
performs the directory and volume interfaces with an av-
erage accuracy of 66% compared to 14% and 6% respec-
tively. Finally, while the accuracy of sparse tasks is not
significantly different, the average time for completion
for the facet interface is 73 seconds, compared to 428
seconds for the directory interface and 559 seconds for
the volume interface. We discuss our statistical compar-
isons and the tasks in more detail in this section.

Statistical analysis: We performed a statistical analy-
sis on our accuracy results in order to test the strength
of our findings. Because our data was not well-fitted to
the chi-squared test, we used a one-sided Fisher’s Ex-
act Test for accuracy and a t-test to compare times. We
used Benjamini-Hochberg correction to adjust our p val-
ues to correct for our use of multiple comparisons. As is
conventional in HCI studies, we used α = .05. All the
comparisons mentioned in this section were statistically
significant, except where explicitly mentioned.

Single replica tasks: Figure 4 shows results from the
single replica tasks. As expected, the directory and view
interfaces, which both have a single replica class, per-
form equivalently, while the volume interface suffers
heavily due to the extra complexity of two distinct replica
classes. The comparisons between the single replica in-
terfaces and the volume interface are all statistically sig-
nificant. We do not show times, because they showed no
appreciable differences.

Data organization tasks: Results from the three aggre-

0

20

40

60

80

100

P
e

rc
e

n
t

co
rr

e
ct

Facet Directory Volume

Figure 4: Single replica task results. This graph shows the results of
the single replica tasks.

0

20

40

60

80

100

P
e

rc
e

n
t

co
rr

e
ct

Facet Directory Volume

Aggrega�on Comprehension

Figure 5: Data organization task results. This graph shows the
results from the aggregation and comprehension tasks.

gation tasks (U2, RF, and TV), and the two compre-
hension tasks (TB and TM) are shown in Figure 5. As
expected, the faceted metadata approach performs sig-
nificantly better than the alternative approaches, as the
filesystem structure more closely matches that of the ap-
plications. The facet interface is statistically better than
both the other interfaces in the aggregation tasks, but we
would need more data for statistical significance for the
comprehension tasks.

Figure 6 shows the accuracy and time metrics for the
sparse tasks (BF and HV). Note that none of the accu-
racy comparisons are statistically significant. This is be-
cause in the sparse tasks, each file is in a unique location,
making the correlation between application structure and
filesystem structure clear, but very inconvenient. In con-
trast, for the other aggregation tasks the correlation be-
tween application and structures and the filesystem was
hazy, leading to errors. However, setting the policy on
each individual file was extremely time consuming, lead-
ing to a statistically significant difference in times. The
one exception is the HV task, where too few volume

73 74 71

428
553

302

559
724

394

0

500

1000

Avg BF HV

T
im

e
 (

se
c)

Facet Directory Volume

Figure 6: Sparse collection task results. This graph shows the results
from all of the sparse collection tasks.

users correctly performed the task to allow comparison
with the other interfaces. Indeed, the hierarchical inter-
faces took an order of magnitude longer than the facet in-
terface for these tasks. Thus re-creating the groups was
difficult, leading to frustration and frequent grumbling
that “there must be a better way to do this.”

6.4 Performance evaluation

We have found that Perspective generally incurs neg-
ligible overhead over the base filesystem, and its per-
formance is sufficient for everyday use. Using overlap
trees to reason about the location of files based on the
available views is a significant improvement over sim-
pler schemes. All our tests were run on a MacBook Pro
2.5GHz Intel Core Duo with 2GB RAM running Macin-
tosh OS X 10.5.4.

Performance overhead: Our benchmark writes 200
4MB files, clearing the cache by writing a large amount
of data elsewhere and then re-reading all 800MB. This
sequential workload on small files simulates common
media workloads. For these tasks, we compared Per-
spective to HFS+, the standard OS X filesystem. Writing
the files on HFS+ and Perspective took 18.1 s and 18.6 s,
respectively. Reading them took 17.0 s and 17.2 s, re-
spectively. Perspective has less than a 3% overhead in
both phases of this benchmark. In a more real-world sce-
nario, Perspective has been used by the authors for sev-
eral months as the backing store for several multi-tuner
DVRs, without performance problems.

Overlap trees: Overlap trees allow us to efficiently com-
pute how many copies of a given file set are stored in
the system, despite the more flexible storage policies that
views provide. It is important to make this operation ef-
ficient because, while it is only used in administration
tasks, these tasks require calculation of a large number
of these overlaps in real time as the user browses and
manipulates data placement policies.

Figure 7 summarizes the benefits of overlap trees. We
compared overlap trees to a simple method that enumer-
ates all matching files and compares them against the

Num files Create OT OT no probe OT w/ probe Simple
100 9.6ms 0.3ms 3.5ms 961ms (.9sec)

1000 29ms 0.6ms 3.8ms 12759ms (12sec)

10000 249ms 0.6ms 3.4ms 95049ms (95sec)

Figure 7: Overlap tree benchmark. This table shows the results
from the overlap tree benchmark. It compares the time to create a tree
and perform an overlap comparison, with or without probes, and com-
pares to the simple enumerate approach. The results are the average of
10 runs.

views in the system. We break out the cost for tree
creation and then the cost to compute an overlap. The
“probe” case uses a query and view set that requires the
overlap tree to probe the filesystem to compute the over-
lap, while the “no probe” case can be determined solely
through query comparisons. Overlap trees take a task
that would require seconds or minutes and turns it into a
task requiring milliseconds.

7 Related work
A primary contribution of Perspective is the use of se-
mantic queries to manage the replication of data. Specif-
ically, it allows the system to provide accessibility and
reliability guarantees over semantic, partially replicated
data. This builds on previous semantic systems that used
queries to locate data, and hierarchies to manage data.
Our user study evaluation shows that, by supporting se-
mantic management, Perspective can simplify important
management tasks for end users.

Another contribution is a filesystem design based on in-
situ analysis of the home environment. This overall de-
sign could be implemented on top of a variety of under-
lying filesystem implementations, but we believe that a
fully view-based system provides simplicity to both user
and designer by keeping the primitives similar through-
out the system. While no current system provides all
of the features of Perspective, Perspective builds on a
wealth of previous work in data placement, consistency,
search and publish/subscribe event notification. In this
section we discuss this related work.

Data placement: Views allow flexible data placement
used to provide both reliability and mobility. Views are
another step in a long progression of increasingly flexible
data placement schemes.

The most basic approach to storing data in the home is to
put all of the data on a single server and make all other
devices in the home clients of this server. Variations of
this approach centralize control, while allowing data to
be cached on devices [18, 35].

To provide better reliability, AFS [34] expanded the sin-
gle server model to include a tier of replicated servers,

each connected in a peer-to-peer fashion. However,
clients cannot access data when they are out of contact
with the servers. Coda [32] addressed this problem by
allowing devices to enter a disconnected mode, in which
devices use locally cached data defined by user hoard-
ing priorities. However, hoarded replicas do not provide
the reliability guarantees allowed by volumes because
devices make no guarantee about what data resides on
what devices, or how long they will keep the data they
currently store. Views extend this notion by allowing
volume-style reliability guarantees along with the flex-
ibility of hoarding in the same abstraction.

A few filesystems suggested even more flexible methods
of organizing data. BlueFS extended the hoarding prim-
itive to allow client devices to access data hoarded on
portable storage devices, in addition to the local device,
but did not explore the use of this primitive for accessi-
bility or reliability beyond that provided by Coda [21].
Footloose [24] proposed allowing individual devices to
register for data types in this kind of system as an alter-
native to hoarding files, but did not expand it to general
publish/subscribe-style queries, or explore how to use
this primitive for mobility and reliability management or
for distributed search.

Consistency: Perspective supports decentralized,
topology-independent consistency for semantically-
defined, partially replicated data, a critical feature for
the home environment. While no previous system
provides these properties out of the box, PRACTI [7]
also provides a framework for topology-independent
consistency of partially replicated data over directo-
ries, in addition to allowing a group of sophisticated
consistency guarantees. PRACTI could probably be
extended to use semantic groupings fairly simply, and
thus provide consistency properties like Perspective.
Recently, Cimbiosis [28] has also built on a view-style
system of partial replication and topology independence,
with a different consistency model.

Cimbiosis also presents a sync tree which provides a dis-
tributed algorithm to ensure connectedness, and routes
updates in a more flexible manner. This sync tree could
be layered on top of Perspective or PRACTIs consistency
mechanisms to provide these advantages.

We chose our approach over Cimbiosis because it does
not require any device to store all files, while Cimbio-
sis has this requirement. Many of the households in our
contextual analysis did not have any such master device,
leading us to believe requiring it could be a problem.
Perspective also does not require small devices to track
any information about the data stored on other devices,
while PRACTI requires them to store imprecise sum-
maries. However, there are advantages to each of these

approaches as well. For example, PRACTI provides a
more flexible consistency model than Perspective, and
Cimbiosis a more compact log structure. A full compari-
son of the differences between these approaches, and the
relative importance of these differences, is beyond the
scope of this paper. We present Perspective’s algorithms
to show that it is possible to build a simple, efficient con-
sistency protocol for a view-based system.

Previous peer-to-peer systems such as Bayou [40], FI-
CUS [16] and Pangaea [30] extended synchronization
and consistency algorithms to accommodate mobile de-
vices, allowing these systems to blur or eliminate the dis-
tinction between server and client. However, none of
these systems fully support topology-independent con-
sistency with partial replication. EnsemBlue [25] takes
a middle ground, providing support for groups of client
devices to form device ensembles [33], which can share
data separately from a server through the creation of a
temporary pseudo-server, but requiring a central server
for consistency and reliability.

Search: We believe that effective home data manage-
ment will use search on data attributes to allow flexi-
ble access to data across heterogeneous devices. Per-
spective takes the naming techniques of semantic sys-
tems and applies them to the replica management tasks
of mobility and reliability as well. Naturally, Perspective
borrows its semantic naming structures and search tech-
niques from a rich history of previous work. The Seman-
tic Filesystem [12] proposed the use of attribute queries
to locate data in a file system, and subsequent systems
showed how these techniques could be extended to in-
clude personalization [14]. Flamenco [43] uses “faceted
metadata,” a scheme much like the semantic filesystem’s.
Many newer systems [3, 13, 19, 37] borrow from the
Semantic Filesystem by adding semantic information to
filesystems with traditional hierarchical naming. Mi-
crosoft’s proposed WinFS filesystem also incorporated
semantic naming [42].

Perspective also uses views to provide efficient dis-
tributed search, by guiding searches to appropriate de-
vices. The most similar work is HomeViews [11], which
uses a primitive similar to Perspective’s views to allow
users to share read-only data. HomeViews combines ca-
pabilities with persistent queries to provide an extended
version of search over data, but do not use them to target
replica management tasks like reliability.

Replica indices and publish/subscribe: In order to pro-
vide replica coherence and remote data access, filesys-
tems need a replica indexing system that forwards up-
dates to the correct file replicas and locates the replicas
of a given file when it is accessed remotely. Previous sys-
tems have used volumes to index replicas [32, 34], but

did not support replica indexing in a partially replicated
peer-ensemble. EnsemBlue [25] extended the volume
model to support partially replicated peer-ensembles by
allowing devices to store a single copy of all replica lo-
cations onto a temporarily elected pseudo-server device.
EnsemBlue also showed how its replica indexing system
could be leveraged to provide more general application-
level event notification. Perspective takes an inverse ap-
proach; it uses a publish/subscribe model to implement
replica indexing and, thus, application-level event notifi-
cation. This matches the semantic nature of views.

This work does not propose algorithms beyond the cur-
rent publish/subscribe literature [1, 4, 6, 26, 38], it ap-
plies publish/subscribe algorithms to the new area of
file system replica indices. Using a publish/subscribe
method for replica indexing provides advantages over a
pseudo-server scheme, such as efficient ensemble cre-
ation, but also disadvantages, such as requiring view
changes to move replicas. Again, a full comparison of
alternative approaches is beyond the scope of the paper.
We present Perspective’s algorithms to show that replica
indexing can be performed efficiently using views.

User studies: While we believe our contextual analy-
sis is the first focused on home data organization and
reliability, researchers have conducted a wealth of stud-
ies on technology use and management, especially in the
home [2, 5, 9, 15, 17, 20, 22, 39]. We borrow our meth-
ods from these previous studies, and use them to ground
our exploration and analysis.

8 Conclusion
Home users struggle with replica management tasks that
are normally handled by professional administrators in
other environments. Perspective provides distributed
storage for the home with a new approach to data loca-
tion management: the view. Views simplify replica man-
agement tasks for home storage users, allowing them to
use the same attribute-based naming style for such tasks
as for their regular data navigation.

Acknowlegements
We thank Rob Reeder, Jay Melican, and Jay Hasbrouck
for helping with the users studies. We also thank the
members and companies of the PDL Consortium (includ-
ing APC, Cisco, DataDomain, EMC, Facebook, Google,
HP, Hitachi, IBM, Intel, LSI, Microsoft, NetApp, Ora-
cle, Seagate, Sun, Symantec, and VMware) for their in-
terest, insights, feedback, and support. This material is
based on research sponsored in part by the National Sci-
ence Foundation, via grants #CNS-0326453 and #CNS-

0831407, and by the Army Research Office, under agree-
ment number DAAD19–02–1–0389. Brandon Salmon is
supported in part by an Intel Fellowship.

References
[1] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman,

Mark Astley, and Tushar D. Chandra. Matching events

in a content-based subscription system. PODC. (Atlanta,

GA, 04–06 May. 1999), pages 53–61. ACM, 1999.

[2] R. Aipperspach, T. Rattenbury, A. Woodruff, and

J. Canny. A Quantitative Method for Revealing and Com-

paring Places in the Home. UBICOMP (Orange County,

CA, Sep. 2006), 2006.

[3] Beagle web page, http://beagle-project.org, 2007.

[4] Sumeer Bhola, Yuanyuan Zhao, and Joshua Auerbach.

Scalably supporting durable subscriptions in a pub-

lish/subscribe system. DSN. (San Francisco, CA, 22–25

Jun. 2003), pages 57–66. IEEE, 2003.

[5] A. J. Bernheim Brush and Kori M. Inkpen. Yours, Mine

and Ours? Sharing and Use of Technology in Domestic

Environments. UBICOMP 07, 2007.

[6] Antonio Carzaniga, David S. Rosenblum, and Alexan-

der L. Wolf. Achieving Expressiveness and Scalability in

an Internet-Scale Event Notification Service. Nineteenth
ACM Symposium on Principles of Distributed Computing
(PODC2000) (Portland, OR, Jul. 2000), pages 219–227,

2000.

[7] Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkatara-

mana, Praveen Yalagandula, and Jiandan Zheng. PRACTI

Replication. NSDI. (May. 2006), 2006.

[8] Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas, Sean

Rhea, Frans Kaashoek, and Robert Morris. Persistent

personal names for globally connected mobile devices.

OSDI. (Seattle, WA, 06–08 Nov. 2006), pages 233–248.

USENIX Association, 2006.

[9] David M. Frohlich, Susan Dray, and Amy Silverman.

Breaking up is hard to do: family perspectives on the fu-

ture of the home PC. International Journal of Human-
Computer Studies, 54(5):701–724, May. 2001.

[10] Filesystem in User Space. http://fuse.sourceforge.net/.

[11] Roxana Geambasu, Magdalena Balazinska, Steven D.

Gribble, and Henry M. Levy. HomeViews: Peer-to-Peer

Middleware for Personal Data Sharing Applications. SIG-
MOD., 2007.

[12] David K. Gifford, Pierre Jouvelot, Mark A. Sheldon, and

James W. O’Toole Jr. Semantic file systems. SOSP.
(Asilomar, Pacific Grove, CA). Published as Operating
Systems Review, 25(5):16–25, 13–16 Oct. 1991.

[13] Google desktop web page, http://desktop.google.com,

Aug. 2007.

[14] Burra Gopal and Udi Manber. Integrating Content-

based Access Mechanisms with Heirarchical File Sys-

tems. OSDI. (New Orleans, LA, Feb. 1999), 1999.

[15] Rebecca E Grinter, W Keith Edwards, Mark W New-

man, and Nicolas Ducheneaut. The work to make a home

network work. European Conference on Computer Sup-
ported Cooperative Work (ESCW) (Paris, France, 18–22

Sep. 2005), 2005.

[16] Richard G. Guy. Ficus: A Very Large Scale Reliable Dis-
tributed File System. PhD thesis, published as Ph.D. The-

sis CSD-910018. University of California, Los Angeles,

1991.

[17] Thomas Karagiannis, Elias Athanasopoulos, Christos

Gkantsidis, and Peter Key. HomeMaestro: Order from
Chaos in Home Networks. MSR-TR 2008-84. Microsoft

Research, May. 2008.

[18] Alexandros Karypidis and Spyros Lalis. OmniStore:

A system for ubiquitous personal storage management.

IEEE International Conference on Pervasive Computing
and Communications. IEEE, 2006.

[19] Dahlia Malkhi and Doug Terry. Concise Version Vectors

in WinFS. DISC. (Cracow, Poland, Sep. 2005), 2005.

[20] Catherine C Marshall. Rethinking Personal Digital

Archiving, Part 1: Four Challenges from the Field. DLib
Magazine, 14(3/4), Mar. 2008.

[21] Edmund B. Nightingale and Jason Flinn. Energy-

efficiency and storage flexibility in the Blue file system.

OSDI. (San Francisco, CA, 06–08 Dec. 2004), pages

363–378. USENIX Association, 2004.

[22] Jon O’Brien, Tom Rodden, Mark Rouncefield, and John

Hughes. At home with the technology: an ethnographic

study of a set-top-box trial. CHI, 1999.

[23] John K. Ousterhout, Andrew R. Cherenson, Fredrick

Douglis, Michael N. Nelson, and Brent B. Welch. The

Sprite network operating system. IEEE Computer,

21(2):23–36, Feb. 1988.

[24] Justin Mazzola Paluska, David Saff, Tom Yeh, and

Kathryn Chen. Footloose: A Case for Physical Even-

tual Consistency and Selective Conflict Resolution. IEEE
Workshop on Mobile Computing Systems and Applica-
tions (Monterey, CA, 09–10 Oct. 2003), 2003.

[25] Daniel Peek and Jason Flinn. EnsemBlue: Integrating dis-

tributed storage and consumer electronics. OSDI (Seattle,

WA, 06–08 Nov. 2006), 2006.

[26] Peter R. Pietzuch and Jean M. Bacon. Hermes: A Dis-

tributed Event-Based Middleware Architecture. Interna-
tional Workshop on Distributed Event-Based Systems (Vi-

enna, Austria), 2002.

[27] Rob Pike, Dave Presotto, Ken Thompson, and Howard

Trickey. Plan 9 from Bell Labs. United Kingdom
UNIX systems User Group (London, UK, 9–13 Jul. 1990),

pages 1–9. United Kingdom UNIX systems User Group,

Buntingford, Herts, 1990.

[28] Venugopalan Ramasubramanian, Thomas L. Rodeheffer,

Douglas B. Terry, Meg Walraed-Sullivan, Ted Wobbler,

Catherine C. Marshall, and Amin Vahdat. Cimbiosys:

A Platform for content-based partial replication. NSDI.
(Boston, MA, Apr. 2009), 2009.

[29] Robert W. Reeder, Lujo Bauer, Lorrie Faith Cranor,

Michael K. Reiter, Kelli Bacon, Keisha How, and Heather

Strong. Expandable grids for visualizing and authoring

computer security policies. CHI (Florence, Italy, 2007),

2007.

[30] Yasushi Saito and Christos Karamanolis. Name space
consistency in the Pangaea wide-area file system. HP

Laboratories SSP Technical Report HPL–SSP–2002–12.

HP Labs, Dec. 2002.

[31] Brandon Salmon, Frank Hady, and Jay Melican. Learn-
ing to Share: A Study of Sharing Among Home Storage
Devices. Technical Report CMU-PDL-07-107. Carnegie

Mellon University, Oct. 2007.

[32] M. Satyanarayanan. The evolution of Coda. ACM Trans-
actions on Computer Systems, 20(2):85–124. ACM Press,

May. 2002.

[33] Bill Schilit and Uttam Sengupta. Device Ensembles.

IEEE Computer, 37(12):56–64. IEEE, Dec. 2004.

[34] Bob Sidebotham. VOLUMES – the Andrew file system

data structuring primitive. EUUGAutumn. (Manchester,

England, 22−24 Sep. 1986), pages 473–480. EUUG Sec-

retariat, Owles Hall, Buntingford, Herts SG9 9PL, Sep.

1986.

[35] Sumeet Sobti, Nitin Garg, Fengzhou Zheng, Junwen Lai,

Yilei Shao, Chi Zhang, Elisha Ziskind, Arvind Krishna-

murthy, and Randolph Y. Wang. Segank: a distributed

mobile storage system. FAST. (San Francisco, CA, 31

Mar.–02 Apr. 2004), pages 239–252. USENIX Associa-

tion, 2004.

[36] Craig A. N. Soules and Gregory R. Ganger. Connec-

tions: Using Context to Enhance File Search. SOSP.
(Brighton, United Kingdom, 23–26 Oct. 2005), pages

119–132. ACM, 2005.

[37] Spotlight web page, http://www.apple.com/macosx/-

features/spotlight, Aug. 2007.

[38] Peter Sutton, Rhys Arkins, and Bill Segall. Supporting

Disconnectedness - Transparent Information Delivery for

Mobile and Invisible Computing. International Sympo-
sium on Cluster Computing and the Grid (CCGrid), 2001.

[39] Alex S. Taylor, Richard Harper, Laurel Swan, Shahram

Izadi, Abigail Sellen, and Mark Perry. Homes that make

us smart. Personal and Ubiquitous Computing. Springer

London, 2006.

[40] Douglas B. Terry, Marvin M. Theimer, Karin Petersen,

Alan J. Demers, Mike J. Spreitzer, and Carl H. Hauser.

Managing update conflicts in Bayou, a weakly connected

replicated storage system. SOSP. (Copper Mountain Re-

sort, CO, 3–6 Dec. 1995). Published as Operating Sys-
tems Review, 29(5), 1995.

[41] Mark Weiser. The computer for the 21st century. Scien-
tific American, Sep. 1991.

[42] WinFS 101: Introducing the New Windows File System,

March 2007. http://msdn.microsoft.com/en-us/library/-

aa480687.aspx.

[43] Ping Yee, Kirsten Swearingen, Kevin Li, and Marti

Hearst. Faceted Metadata for Image Search and Brows-

ing. CHI, 2003.

