On Fletcher and Adler codes, and classic CRC-s

Fletcher Code [3] and Adler Code [4] detect much less than CRC-32 codes [5]

Fletcher and Adler code seem to lack a theoretical ground, and their error detection capability is inferior to that attainable by CRC of the same number of bits.

CRC-32, Adler-32, and Fletcher-32 (2*16), all append 32 bits to the information data.

With this number of bits, CRC-32 can detect any single burst of up to 32 bits, on a stream of data of any length [1], [2],[5].

Here are examples for relatively short bursts that Adler and Fletcher can not detect.

A 24-bit burst error which Adler-32 code can not detect:

Recall that Adler-32 runs two sums: s1 and s2 [4]. Suppose that at some point on the data stream s1=a and s2=b. Suppose that both a and b are way smaller than 65521, the value called "BASE" at [4]. Also suppose that at that point the original data stream continues with bytes of values 4,2,1. At the end of these three bytes, the values of s1 grows to a+4+2+1 = a+7, whereas s2 grows to b+a+4+a+6+a+7 = b+3a+17. Now, suppose that a 24 burst occurred on these three bytes, which modified them to 5,0,2. Now, when doing the detection, s1=a and s2=b just before these three bytes, and on completion of their processing, s1=a+5+0+2 = a+7, and s2=b+a+5+a+5+a+7=b+3a+17. Detecting from that point and on to the end of the data stream, s1 and s2 will trace the very same values they had on encoding, and thus the burst is not detected.

This occurs for every three consecutive bytes x,y,z which are modified to x',y', and z', such that 2x+y = 2x'+y', and z and z' are any two numbers such that z'-z = x+y-x'-y'. Too likely.

A 16-bit burst error which Fletcher-32 code can not detect:

Because Fletcher does 1's complement calculations, the addition of 0x0000 to any number other than 0 yields the same result as adding of 0xFFFF. Thus, Fletcher code can not detect two consecutive bytes which turned both from 0x00 to 0xFF .

Fast Software implementation

The celebrated property of both Fletcher and Adler is the speed of their software implementations.

Nevertheless, there are known techniques for programing CRC-32 [6], such that the coding (as well as the decoding) of each byte calls for one table look up, in a table of 256 32-bit words, one AND operation (which can be avoided in machine code -- taking AL from the whole of EAX, say), one XOR, and one 8-bit shift.

Adler [4] demands the expensive modulo operation with a very lare prime, for the processing of each byte, or some test to indicate the necessity in that operation. Fletcher [7] only demands an addition, and can work on 16-bit at a time.

CRC-32 too can be worked 16-bit at a time, but this would mean using a table of 2^16=64K entries of 32-bit each, which might hurt caching.

Good CRC codes

Every CRC code detects every one burst error that is not longer than the number of bits of the CRC.

With probability 2^-r (where r is the number of bits or the CRC) it fails to detect a burst longer than r.

Wolf [2] presents an interesting definition of a burst error, where the burst is parameterized by both - its width and the probability of inverting a bit within that width. With this definition, the probability of detecting a burst error that is wider than the number of CRC bits depends on the specific generator polynomial picked, and not only on its degree (=number of CRC bits). Wolf found that good generating polynomials are of the form (1+x)p(x) where p(x) is a primitive polynomial.

Looking at good CRC-64 codes, we would thus want to investigate primitive polynomials of degree 63 [8].

Bibliography

[1] Error Correcting Codes by Peterson and Weldon, the MIT Press, 1961

[2] "The single burst error detection performance of binary cyclic codes" by Jack Wolf and Dexter Chun, IEEE Trans. on Communications, Vol 42, pp 11-13, January 1994.

[3] RFC1146: TCP Alternate Checksum Options, at http://rfc.net/rfc1146.html

[4] RFC1150: ZLIB Compressed Data Format Specification version 3.3, at http://rfc.net/rfc1150.html

[5] "Cyclic Redundancy Checking for Ethernet" at http://lev.yudalevich.tripod.com/ECC/crc.html

[6] "Fast CRC32 in Software" by Richard Black, 1994, at www.cl.cam.ac.uk/Research/SRG/bluebook/21/crc/crc.html

[7] "Nasa FITS documents" at http://heasarc.gsfc.nasa.gov/docs/heasarc/ofwg/docs/general/checksum/node26.html

[8] "Information on Primitive and Irreducible Polynomials" at http://www.theory.csc.uvic.ca/~cos/inf/neck/PolyInfo.html

